Innervation of single fungiform taste buds during development in rat. 1998

R F Krimm, and D L Hill
Department of Pathology, University of Kentucky Medical Center, Lexington 40507, USA.

To determine whether the innervation of taste buds changes during postnatal development, the number of geniculate ganglion cells that innervated single fungiform taste buds were quantified in the tip- and midregions of the tongue of adult and developing rats. There was substantial variation in both the size of individual taste buds and number of geniculate ganglion cells that innervated them. Importantly, taste bud morphology and innervation were highly related. Namely, the number of labeled geniculate ganglion cells that innervated a taste bud was highly correlated with the size of the taste bud (r = 0.91, P < .0003): The larger the taste bud, the more geniculate ganglion cells that innervated it. The relationship between ganglion cell number and taste bud volume emerged during the first 40 days postnatal. Whereas there was no difference in the average number of ganglion cells that innervated individual taste buds in rats aged 10 days postnatal through adulthood, taste bud volumes increased progressively between 10 and 40 days postnatal, at which age taste bud volumes were similar to adults. The maturation of taste bud size was accompanied by the emergence of the relationship between taste bud volume and number of innervating neurons. Specifically, there was no correlation between taste bud size and number of innervating geniculate ganglion cells in 10-, 20-, or 30-day-old rats, whereas taste bud size and the number of innervating ganglion cells in 40-day-old rats were positively correlated (r = .80, P < .002). Therefore, the relationship between taste bud size and number of innervating ganglion cells develops over a prolonged postnatal period and is established when taste buds grow to their adult size.

UI MeSH Term Description Entries
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D005830 Geniculate Ganglion The sensory ganglion of the facial (7th cranial) nerve. The geniculate ganglion cells send central processes to the brain stem and peripheral processes to the taste buds in the anterior tongue, the soft palate, and the skin of the external auditory meatus and the mastoid process. Large Superficial Petrosal Nerve,Superficial Petrosal Nerve,External Petrosal Nerve,Geniculate Ganglia,Greater Petrosal Nerve,Greater Superficial Petrosal Nerve,Lesser Petrosal Nerve,Nerve of the Pterygoid Canal,Vidian Nerve,External Petrosal Nerves,Ganglia, Geniculate,Ganglion, Geniculate,Greater Petrosal Nerves,Lesser Petrosal Nerves,Nerve, External Petrosal,Nerve, Greater Petrosal,Nerve, Lesser Petrosal,Nerve, Superficial Petrosal,Nerve, Vidian,Petrosal Nerve, External,Petrosal Nerve, Greater,Petrosal Nerve, Lesser,Petrosal Nerve, Superficial,Superficial Petrosal Nerves
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000367 Age Factors Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time. Age Reporting,Age Factor,Factor, Age,Factors, Age
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013266 Stilbamidines STILBENES with AMIDINES attached.
D013649 Taste The ability to detect chemicals through gustatory receptors in the mouth, including those on the TONGUE; the PALATE; the PHARYNX; and the EPIGLOTTIS. Gustation,Taste Sense,Gustations,Sense, Taste,Senses, Taste,Taste Senses,Tastes
D013650 Taste Buds Small sensory organs which contain gustatory receptor cells, basal cells, and supporting cells. Taste buds in humans are found in the epithelia of the tongue, palate, and pharynx. They are innervated by the CHORDA TYMPANI NERVE (a branch of the facial nerve) and the GLOSSOPHARYNGEAL NERVE. Bud, Taste,Buds, Taste,Taste Bud
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

R F Krimm, and D L Hill
February 1994, The Journal of comparative neurology,
R F Krimm, and D L Hill
June 2012, The European journal of neuroscience,
R F Krimm, and D L Hill
July 2007, Neuroscience,
R F Krimm, and D L Hill
March 1987, Brain research,
R F Krimm, and D L Hill
March 2009, Neuroscience,
R F Krimm, and D L Hill
September 1981, Journal of anatomy,
R F Krimm, and D L Hill
April 1977, The Journal of comparative neurology,
R F Krimm, and D L Hill
November 1995, Regulatory peptides,
R F Krimm, and D L Hill
August 1981, Scandinavian journal of dental research,
Copied contents to your clipboard!