The effects of 5-bromodeoxyuridine and isoproterenol on the postnatal differentiation of rat submandibular gland. 1976

M Fukushima, and T Barka

The effects of 5-bromodeoxyuridine (BrdU) on the postnatal differentiation of rat submandibular gland and on the isoproterenol-induced changes of differentiation were studied. The rats were injected with BrdU for three consecutive days, beginning at two days of age. The total dose of BrdU was 0.9 mg/g body weight. BrdU caused a severe retardation of growth up to 15 days of age. A rapid growth of the animals between 15 and 22 days indicated a recovery from the effect of BrdU. The growth of the submandibular gland was retarded similarly with a corresponding decrease in DNA, RNA and protein content. Incorporation of tritiated thymidine into the submandibular gland was not altered in the BrdU-treated animals at one and three days after the last injection of the analog. At days 15 and 22 the rate of thymidine incorporation was greater in the submandibular gland of BrdU-treated rats as compared to littermate controls. Isoproterenol stimulated thymidine incorporation into the submandibular glands of two-week-old rats. This stimulation was not observed in rats which received BrdU at age 7-9 days, prior to the administration of isoproterenol. Election microscopic observations, including a quantitative analysis of the frequency distribution of the various cell types in the terminal tubules and developing acini, indicated a retardation of acinar cell differentiation in the glands of BrdU-treated rats. In addition, there was an increase in the number and size of the secretory granules in the terminal tubule cells. BrdU treatment, however, caused no obvious pathologic alterations in the submandibular gland. Administration of isoproterenol for five days, beginning at five days of age, caused an apparent acceleration of the differentiation of acinar cells. In the glands of isoproterenol-treated rats the acinar cells were enlarged and were filled with homogeneous secretory granules. Pretreatment with BrdU partially inhibited the effects of isoproterenol on differentiation and hypertrophy of the submandibular gland. With the given dose of BrdU, approximately 5% of thymine was replaced by bromouracil in the DNA of the submandibular gland. Such a replacement would be consistent with a direct effect of BrdU on the cytodifferentiation in the submandibular gland. However, because of the severe retardation of growth of the BrdU-treated rats, indirect effects can not be excluded.

UI MeSH Term Description Entries
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D001973 Bromodeoxyuridine A nucleoside that substitutes for thymidine in DNA and thus acts as an antimetabolite. It causes breaks in chromosomes and has been proposed as an antiviral and antineoplastic agent. It has been given orphan drug status for use in the treatment of primary brain tumors. BUdR,BrdU,Bromouracil Deoxyriboside,Broxuridine,5-Bromo-2'-deoxyuridine,5-Bromodeoxyuridine,NSC-38297,5 Bromo 2' deoxyuridine,5 Bromodeoxyuridine,Deoxyriboside, Bromouracil
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013363 Submandibular Gland One of two salivary glands in the neck, located in the space bound by the two bellies of the digastric muscle and the angle of the mandible. It discharges through the submandibular duct. The secretory units are predominantly serous although a few mucous alveoli, some with serous demilunes, occur. (Stedman, 25th ed) Submaxillary Gland,Gland, Submandibular,Gland, Submaxillary,Glands, Submandibular,Glands, Submaxillary,Submandibular Glands,Submaxillary Glands
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

M Fukushima, and T Barka
September 1972, Developmental biology,
M Fukushima, and T Barka
January 1988, Archives of oral biology,
M Fukushima, and T Barka
April 1985, Acta physiologica Scandinavica,
M Fukushima, and T Barka
January 1988, Archives of oral biology,
M Fukushima, and T Barka
June 1978, Journal of anatomy,
M Fukushima, and T Barka
March 1971, Laboratory investigation; a journal of technical methods and pathology,
Copied contents to your clipboard!