Identification and characterization of two DNA polymerase activities present in Trypanosoma brucei mitochondria. 1998

J Fuenmayor, and J Zhang, and W Ruyechan, and N Williams
Department of Microbiology, State University of New York, Buffalo 14214, USA.

We have identified and partially purified two DNA polymerase activities from purified Trypanosoma brucei mitochondrial extracts. The DNA polymerase activity eluted from the single-stranded DNA agarose column at 0.15 M KCl (polymerase M1) was significantly inhibited by salt concentrations greater than 100 mM, utilized Mg2+ in preference to Mn2+ as a cofactor on deoxyribonucleotide templates with deoxyribose primers, and in the presence of Mn2+ favored a ribonucleotide template with a deoxyribose primer. A 44 kDa peptide in this fraction crossreacted with antisera against the Crithidia fasciculata beta-like mitochondrial polymerase. In activity gels the catalytic peptide migrated at an apparent molecular weight of 35 kDa. The DNA polymerase activity present in the 0.3 M KCl DNA agarose fraction (polymerase M2) exhibited optimum activity at 120-180 mM KCl, used both Mg2+ and Mn2+ as cofactors, and used deoxyribonucleotide templates primed with either deoxyribose or ribose oligomers. Activity gel assays indicate that the native catalytic peptide(s) is approximately 80 kDa in size. The two polymerases showed different sensitivities to several inhibitors: polymerase M1 shows similarities to the Crithidia fasciculata beta-like mitochondrial polymerase while polymerase M2 is a novel, salt-activated enzyme of higher molecular weight.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D002413 Cations, Divalent Positively charged atoms, radicals or groups of atoms with a valence of plus 2, which travel to the cathode or negative pole during electrolysis. Divalent Cations
D002414 Cations, Monovalent Positively charged atoms, radicals or group of atoms with a valence of plus 1, which travel to the cathode or negative pole during electrolysis. Monovalent Cation,Cation, Monovalent,Monovalent Cations
D004259 DNA-Directed DNA Polymerase DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D000180 Acrylic Resins Polymers of high molecular weight which are derived from acrylic acid, methacrylic acid or other related compounds and are capable of being molded and then hardened to form useful components. Acrylic Resin,Resin, Acrylic,Resins, Acrylic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013698 Templates, Genetic Macromolecular molds for the synthesis of complementary macromolecules, as in DNA REPLICATION; GENETIC TRANSCRIPTION of DNA to RNA, and GENETIC TRANSLATION of RNA into POLYPEPTIDES. Genetic Template,Genetic Templates,Template, Genetic

Related Publications

J Fuenmayor, and J Zhang, and W Ruyechan, and N Williams
January 1979, Biochimica et biophysica acta,
J Fuenmayor, and J Zhang, and W Ruyechan, and N Williams
March 2002, Molecular and biochemical parasitology,
J Fuenmayor, and J Zhang, and W Ruyechan, and N Williams
December 2003, The Journal of biological chemistry,
J Fuenmayor, and J Zhang, and W Ruyechan, and N Williams
March 1992, Biochimica et biophysica acta,
J Fuenmayor, and J Zhang, and W Ruyechan, and N Williams
June 1994, Veterinary parasitology,
J Fuenmayor, and J Zhang, and W Ruyechan, and N Williams
June 1983, Journal of molecular biology,
J Fuenmayor, and J Zhang, and W Ruyechan, and N Williams
March 2000, The Journal of biological chemistry,
J Fuenmayor, and J Zhang, and W Ruyechan, and N Williams
December 2006, Molecular and biochemical parasitology,
J Fuenmayor, and J Zhang, and W Ruyechan, and N Williams
April 2007, Experimental parasitology,
J Fuenmayor, and J Zhang, and W Ruyechan, and N Williams
April 1980, Biochemical and biophysical research communications,
Copied contents to your clipboard!