Characterization of three endogenous peptide inhibitors for multiple metalloproteinases with fibrinogenolytic activity from the venom of Taiwan habu (Trimeresurus mucrosquamatus). 1998

K F Huang, and C C Hung, and S H Wu, and S H Chiou
Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.

Three small peptide components were isolated and purified from the venom of Taiwan habu (Trimeresurus mucrosquamatus), which show specific activity to inhibit the strong proteolytic activity of multiple metalloproteinases present in the crude venom. Using multiple chromatographies coupled with successive ultrafiltrations, three inhibitors, i.e. pyroglutamate-lysine-tryptophan (pyroGlu-Lys-Trp), pyroglutamate-asparagine-tryptophan (pyroGlu-Asn-Trp) and pyroglutamate-glutamine-tryptophan (pyroGlu-Gln-Trp) were obtained in good yields and high homogeneity. The yields of these peptide fractions were estimated to be about 0.65 mg, 0.55 mg and 0.42 mg from 250 mg total lyophilized crude venom, which corresponded to the approximate concentrations of 8.4 mM, 7.3 mM and 5.4 mM respectively in venom secretion. Detailed and unambiguous structural determination was established by amino acid analyses, mass spectrometry and microsequencing of purified peptides. Further functional characterization of these three tripeptides showed that they could weakly inhibit three metalloproteinases previously isolated from the same venom. The inhibitory activities were similar among these tripeptides and their IC50 (concentration for 50% inhibition) were estimated in a range of 0.20-0.95 mM, which is much more effective than citrate, another venom protease inhibitor of low molecular-weight component. Since these tripeptides are the endogenous peptide inhibitors present in the lumen of venom glands, it is conceivable that they may act as a self-defensive mechanism against the auto-digestive deleterious effect of the strong metalloproteinases in vivo, particularly several zinc-dependent metalloproteinases present in crotalid and viperid venoms.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008666 Metalloendopeptidases ENDOPEPTIDASES which use a metal such as ZINC in the catalytic mechanism. Metallo-Endoproteinases,Metalloendopeptidase
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D011480 Protease Inhibitors Compounds which inhibit or antagonize biosynthesis or actions of proteases (ENDOPEPTIDASES). Antiprotease,Endopeptidase Inhibitor,Endopeptidase Inhibitors,Peptidase Inhibitor,Peptidase Inhibitors,Peptide Hydrolase Inhibitor,Peptide Hydrolase Inhibitors,Peptide Peptidohydrolase Inhibitor,Peptide Peptidohydrolase Inhibitors,Protease Antagonist,Protease Antagonists,Antiproteases,Protease Inhibitor,Antagonist, Protease,Antagonists, Protease,Hydrolase Inhibitor, Peptide,Hydrolase Inhibitors, Peptide,Inhibitor, Endopeptidase,Inhibitor, Peptidase,Inhibitor, Peptide Hydrolase,Inhibitor, Peptide Peptidohydrolase,Inhibitor, Protease,Inhibitors, Endopeptidase,Inhibitors, Peptidase,Inhibitors, Peptide Hydrolase,Inhibitors, Peptide Peptidohydrolase,Inhibitors, Protease,Peptidohydrolase Inhibitor, Peptide,Peptidohydrolase Inhibitors, Peptide
D011761 Pyrrolidonecarboxylic Acid A cyclized derivative of L-GLUTAMIC ACID. Elevated blood levels may be associated with problems of GLUTAMINE or GLUTATHIONE metabolism. 5-Oxoproline,Pidolic Acid,Pyroglutamic Acid,5-Ketoproline,5-Oxopyrrolidine-2-Carboxylic Acid,Magnesium Pidolate,Pyroglutamate,Pidolate, Magnesium
D002852 Chromatography, Ion Exchange Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins. Chromatography, Ion-Exchange,Ion-Exchange Chromatography,Chromatographies, Ion Exchange,Chromatographies, Ion-Exchange,Ion Exchange Chromatographies,Ion Exchange Chromatography,Ion-Exchange Chromatographies
D003435 Crotalid Venoms Venoms from snakes of the subfamily Crotalinae or pit vipers, found mostly in the Americas. They include the rattlesnake, cottonmouth, fer-de-lance, bushmaster, and American copperhead. Their venoms contain nontoxic proteins, cardio-, hemo-, cyto-, and neurotoxins, and many enzymes, especially phospholipases A. Many of the toxins have been characterized. Bothrops Venom,Crotalidae Venoms,Pit Viper Venoms,Rattlesnake Venoms,Crotactin,Crotalid Venom,Crotalin,Crotaline Snake Venom,Crotalotoxin,Crotamin,Pit Viper Venom,Rattlesnake Venom,Snake Venom, Crotaline,Venom, Bothrops,Venom, Crotalid,Venom, Crotaline Snake,Venom, Pit Viper,Venom, Rattlesnake,Venoms, Crotalid,Venoms, Crotalidae,Venoms, Pit Viper,Venoms, Rattlesnake,Viper Venom, Pit
D005343 Fibrinolytic Agents Fibrinolysin or agents that convert plasminogen to FIBRINOLYSIN. Antithrombic Drug,Antithrombotic Agent,Antithrombotic Agents,Fibrinolytic Agent,Fibrinolytic Drug,Thrombolytic Agent,Thrombolytic Agents,Thrombolytic Drug,Antithrombic Drugs,Fibrinolytic Drugs,Thrombolytic Drugs,Agent, Antithrombotic,Agent, Fibrinolytic,Agent, Thrombolytic,Agents, Antithrombotic,Drug, Antithrombic,Drug, Fibrinolytic,Drug, Thrombolytic,Drugs, Antithrombic
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K F Huang, and C C Hung, and S H Wu, and S H Chiou
February 1976, Biochimica et biophysica acta,
K F Huang, and C C Hung, and S H Wu, and S H Chiou
February 1994, Biotechnology and applied biochemistry,
K F Huang, and C C Hung, and S H Wu, and S H Chiou
November 1995, The Biochemical journal,
K F Huang, and C C Hung, and S H Wu, and S H Chiou
January 1988, Toxicon : official journal of the International Society on Toxinology,
K F Huang, and C C Hung, and S H Wu, and S H Chiou
June 1997, Toxicon : official journal of the International Society on Toxinology,
K F Huang, and C C Hung, and S H Wu, and S H Chiou
April 2010, Toxicon : official journal of the International Society on Toxinology,
K F Huang, and C C Hung, and S H Wu, and S H Chiou
January 1985, Toxicon : official journal of the International Society on Toxinology,
K F Huang, and C C Hung, and S H Wu, and S H Chiou
January 1985, Comparative biochemistry and physiology. B, Comparative biochemistry,
K F Huang, and C C Hung, and S H Wu, and S H Chiou
January 1984, Toxicon : official journal of the International Society on Toxinology,
K F Huang, and C C Hung, and S H Wu, and S H Chiou
October 1999, Biochemical and biophysical research communications,
Copied contents to your clipboard!