PET radiopharmaceuticals: state-of-the-art and future prospects. 1998

T J Tewson, and K A Krohn
Department of Radiology, University of Washington, Seattle 98195-6004, USA.

In this review we provide a conceptual overview of radiopharmaceuticals containing positron-emitting isotopes, not a catalog of radiopharmaceuticals or details of syntheses. We hope to provide an integrated framework for understanding the radiopharmaceuticals that are available at this time, describing both their strengths and weaknesses, and to look forward to some of the improvements that might be anticipated in the next decade. The range of biology that can be studied with positron emission tomography (PET) radiopharmaceuticals has greatly expanded, involving more sophisticated tracers and more sophisticated data analysis. PET measurements now encompass increasingly more specific aspects of human biochemistry and physiology as described in this review. As the biology being studied becomes more complex, the demands on the radiopharmaceutical and the methods of data analysis also become more complex. New synthetic chemistry and data analysis must develop in tandem. Radiopharmaceuticals must be designed to ensure that the rate determining step that is of interest is the one reflected in the data from the radiopharmaceutical. The challenge to the PET community of chemists, biologists, and physicians is to apply new knowledge of human biochemistry for developing and validating useful PET radiopharmaceuticals that will, in turn, produce useful nuclear medicine procedures. Initially the synthesis of a compound containing a short-lived radionuclide was a triumph in itself. However as the science advances the radiochemical synthesis becomes just the first step in a long trail that terminates in the compound being used to provide data on biological processes via a well-designed PET experiment. The resulting list of compounds and experiments should be as diverse as all of human biology and pathophysiology.

UI MeSH Term Description Entries
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014055 Tomography, Emission-Computed Tomography using radioactive emissions from injected RADIONUCLIDES and computer ALGORITHMS to reconstruct an image. CAT Scan, Radionuclide,CT Scan, Radionuclide,Computerized Emission Tomography,Radionuclide Tomography, Computed,Scintigraphy, Computed Tomographic,Tomography, Radionuclide-Computed,Computed Tomographic Scintigraphy,Emission-Computed Tomography,Radionuclide Computer-Assisted Tomography,Radionuclide Computerized Tomography,Radionuclide-Computed Tomography,Radionuclide-Emission Computed Tomography,Tomography, Computerized Emission,CAT Scans, Radionuclide,CT Scans, Radionuclide,Computed Radionuclide Tomography,Computed Tomography, Radionuclide-Emission,Computer-Assisted Tomographies, Radionuclide,Computer-Assisted Tomography, Radionuclide,Computerized Tomography, Radionuclide,Emission Computed Tomography,Emission Tomography, Computerized,Radionuclide CAT Scan,Radionuclide CAT Scans,Radionuclide CT Scan,Radionuclide CT Scans,Radionuclide Computed Tomography,Radionuclide Computer Assisted Tomography,Radionuclide Computer-Assisted Tomographies,Radionuclide Emission Computed Tomography,Scan, Radionuclide CAT,Scan, Radionuclide CT,Scans, Radionuclide CAT,Scans, Radionuclide CT,Tomographic Scintigraphy, Computed,Tomographies, Radionuclide Computer-Assisted,Tomography, Computed Radionuclide,Tomography, Emission Computed,Tomography, Radionuclide Computed,Tomography, Radionuclide Computer-Assisted,Tomography, Radionuclide Computerized,Tomography, Radionuclide-Emission Computed
D019275 Radiopharmaceuticals Compounds that are used in medicine as sources of radiation for radiotherapy and for diagnostic purposes. They have numerous uses in research and industry. (Martindale, The Extra Pharmacopoeia, 30th ed, p1161) Radiopharmaceutical

Related Publications

T J Tewson, and K A Krohn
January 2005, La Radiologia medica,
T J Tewson, and K A Krohn
August 2003, Endocrine reviews,
T J Tewson, and K A Krohn
March 2005, The Journal of urology,
T J Tewson, and K A Krohn
October 1993, Annali italiani di medicina interna : organo ufficiale della Societa italiana di medicina interna,
T J Tewson, and K A Krohn
October 2011, Medecine sciences : M/S,
T J Tewson, and K A Krohn
May 2017, Psicothema,
T J Tewson, and K A Krohn
June 2015, Journal of preventive medicine and hygiene,
T J Tewson, and K A Krohn
March 2012, Current HIV/AIDS reports,
T J Tewson, and K A Krohn
January 2015, Vnitrni lekarstvi,
T J Tewson, and K A Krohn
January 1990, European journal of nuclear medicine,
Copied contents to your clipboard!