Gene regulation by Y-box proteins: coupling control of transcription and translation. 1998

K Matsumoto, and A P Wolffe
Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892-5431, USA.

Y-box proteins are multifunctional regulators of gene expression. In somatic cells, they have the capacity to exert positive and negative effects on both transcription and translation. In Xenopus oocytes, they help to mask maternal mRNA and couple the transcription of mRNA in the nucleus to its translational fate in the cytoplasm. This review describes how the capacity of the Y-box proteins to destabilize both RNA and DNA duplexes, together with their distribution between nuclear and cytoplasmic compartments, might explain these multiple roles.

UI MeSH Term Description Entries
D009696 Nucleic Acids High molecular weight polymers containing a mixture of purine and pyrimidine nucleotides chained together by ribose or deoxyribose linkages. Nucleic Acid,Acid, Nucleic,Acids, Nucleic
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations
D014981 Xenopus An aquatic genus of the family, Pipidae, occurring in Africa and distinguished by having black horny claws on three inner hind toes.

Related Publications

K Matsumoto, and A P Wolffe
April 2020, Biomolecules,
K Matsumoto, and A P Wolffe
December 2015, Science advances,
K Matsumoto, and A P Wolffe
April 2017, Science (New York, N.Y.),
K Matsumoto, and A P Wolffe
February 2024, International journal of molecular sciences,
K Matsumoto, and A P Wolffe
March 1996, The international journal of biochemistry & cell biology,
K Matsumoto, and A P Wolffe
April 2015, Genome biology and evolution,
K Matsumoto, and A P Wolffe
March 1996, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
K Matsumoto, and A P Wolffe
January 2007, Science progress,
K Matsumoto, and A P Wolffe
June 2004, Cancer biology & therapy,
Copied contents to your clipboard!