Yeast elongation factor 3: structure and function. 1998

K Chakraburtty, and F J Triana-Alonso
Department of Biochemistry, Medical College of Wisconsin, Milwaukee 53226, USA.

Elongation factor 3 (EF-3) is a unique and essential requirement of the fungal translational apparatus. EF-3 is a single polypeptide protein with a molecular weight of 116,000 required by yeast ribosomes for in vitro translation and for in vivo growth. The YEF3 gene, located on chromosome xii, is essential for the survival of yeast. The deduced amino acid sequence of EF-3 has revealed the presence of duplicated ATP-binding cassettes similar to those present in the membrane associated transporters. The carboxy-terminus of EF-3 contains blocks of lysine boxes essential for its functional interaction with yeast ribosomes. EF-3 stimulates binding of aminoacyl-tRNA to the ribosomal A-site by facilitating release of deacylated tRNA from the exit site (E-site). Chasing experiments revealed that EF-3 enhances the rate of tRNA dissociation from the E-site by a factor of two without affecting the affinity of the site for tRNA. EF-3 function is dependent on ATP hydrolysis. The existence of functional homologs of EF-3 in higher eukaryotes is still an open question. Further investigations are needed to settle this issue.

UI MeSH Term Description Entries
D010445 Peptide Elongation Factors Protein factors uniquely required during the elongation phase of protein synthesis. Elongation Factor,Elongation Factors, Peptide,Factor, Elongation,Factors, Peptide Elongation
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D029701 Saccharomyces cerevisiae Proteins Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes. Baker's Yeast Proteins,S cerevisiae Proteins

Related Publications

K Chakraburtty, and F J Triana-Alonso
September 1989, The Journal of biological chemistry,
K Chakraburtty, and F J Triana-Alonso
January 1999, The international journal of biochemistry & cell biology,
K Chakraburtty, and F J Triana-Alonso
June 1984, Biochemistry,
K Chakraburtty, and F J Triana-Alonso
May 2023, Archives of biochemistry and biophysics,
K Chakraburtty, and F J Triana-Alonso
January 1985, Nucleic acids symposium series,
K Chakraburtty, and F J Triana-Alonso
March 1999, The Journal of biological chemistry,
Copied contents to your clipboard!