Mechanisms for protection against inactivation of manganese peroxidase by hydrogen peroxide. 1998

S L Timofeevski, and N S Reading, and S D Aust
Biotechnology Center, Utah State University, Logan, Utah, 84322-4705, USA.

It has been reported that cation radicals of aromatic substrates maintain the active form of lignin peroxidase by oxidatively converting compound III, generated during peroxidase turnover, into ferric enzyme (D. P. Barr and S. D. Aust, 1994, Arch. Biochem. Biophys. 312, 511-515). In this work, we investigated protective mechanisms for manganese peroxidase. Oxidation of Mn(II) by manganese peroxidase displayed complex kinetics, which were explained by accumulation of compound III followed by its reactivation by the enzymatically produced Mn(III). Conversion of compound III to ferric enzyme by Mn(III) was not observed for lignin peroxidase or heme propionate-modified recombinant manganese peroxidase, suggesting that Mn(III) may interact with compound III of native manganese peroxidase at a heme propionate to oxidize iron-coordinated superoxide via long-range electron transfer. Additionally, Mn(II) also reactivated compound III. Although this reaction was slower, it could prevent compound III accumulation when excess Mn(II) was present. Another protective mechanism for manganese peroxidase is proposed for insufficient chelator conditions. In contrast to effective Mn(II) chelators, low-affinity ligands supported considerably slower enzyme turnover, and Mn(III) released was more reactive with hydrogen peroxide, resulting in a catalase-type reaction. Reactivation of compound III and catalatic activity may provide biologically relevant mechanisms for protection of manganese peroxidase against suicidal inactivation by hydrogen peroxide under a variety of manganese and oxalate conditions.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010544 Peroxidases Ovoperoxidase
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D003574 Cytochrome c Group A group of cytochromes with covalent thioether linkages between either or both of the vinyl side chains of protoheme and the protein. (Enzyme Nomenclature, 1992, p539) Cytochromes Type c,Group, Cytochrome c,Type c, Cytochromes
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006418 Heme The color-furnishing portion of hemoglobin. It is found free in tissues and as the prosthetic group in many hemeproteins. Ferroprotoporphyrin,Protoheme,Haem,Heme b,Protoheme IX
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D001487 Basidiomycota A phylum of fungi that produce their sexual spores (basidiospores) on the outside of the basidium. It includes forms commonly known as mushrooms, boletes, puffballs, earthstars, stinkhorns, bird's-nest fungi, jelly fungi, bracket or shelf fungi, and rust and smut fungi. Basidiomycetes,Basidiomycete,Basidiomycotas
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

S L Timofeevski, and N S Reading, and S D Aust
March 1990, Biochimica et biophysica acta,
S L Timofeevski, and N S Reading, and S D Aust
December 1996, Lipids,
S L Timofeevski, and N S Reading, and S D Aust
August 2023, Scientific reports,
S L Timofeevski, and N S Reading, and S D Aust
June 2000, The Biochemical journal,
S L Timofeevski, and N S Reading, and S D Aust
February 1995, Archives of biochemistry and biophysics,
S L Timofeevski, and N S Reading, and S D Aust
June 1994, Biochimica et biophysica acta,
S L Timofeevski, and N S Reading, and S D Aust
October 1990, Biochimica et biophysica acta,
S L Timofeevski, and N S Reading, and S D Aust
March 2003, Chemico-biological interactions,
Copied contents to your clipboard!