Transcription of Epstein-Barr virus latent cycle genes in oral hairy leukoplakia. 1998

J Webster-Cyriaque, and N Raab-Traub
University of North Carolina Hospitals, University of North Carolina, Chapel Hill, North Carolina, 27599, USA.

The hairy leukoplakia lesion (HLP) is a unique example of a permissive infection with Epstein-Barr virus (EBV) in the tongue epithelium. HLP contains abundant replicating viral DNA and may be coinfected with multiple EBV strains. In this study, characterization of viral gene transcription within HLP biopsy specimens revealed that several genes, usually expressed in latently infected lymphocytes, are also transcribed in the HLP lesion. The BamHI W and C promoters, (Wp and Cp) are consistently active in the HLP lesion, resulting in transcription and processing of mRNAs that encode the Epstein-Barr nuclear antigens (EBNAs) EBNA-LP, EBNA1, EBNA2, EBNA3B, and EBNA3C. The EBNA2 protein has been shown to activate expression of the EBV receptor, CD21. In HLP, CD21 transcription is also detected, usually in samples that contain transcripts for EBNA2. Transcripts encoding the LMP1 gene, the LMP2 gene, and rightward transcripts from the BamHI A fragment of the EBV genome are also detected in HLP. These gene products are invariably expressed in latently infected lymphocytes. This pattern of transcription suggests that genes characteristic of latent infection are also expressed in HLP. The activation of Wp and expression of EBNA2 and CD21 may contribute to the unique ability of the HLP lesion to permit superinfection and viral replication of multiple EBV strains.

UI MeSH Term Description Entries
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D004854 Herpesvirus 4, Human The type species of LYMPHOCRYPTOVIRUS, subfamily GAMMAHERPESVIRINAE, infecting B-cells in humans. It is thought to be the causative agent of INFECTIOUS MONONUCLEOSIS and is strongly associated with oral hairy leukoplakia (LEUKOPLAKIA, HAIRY;), BURKITT LYMPHOMA; and other malignancies. Burkitt Herpesvirus,Burkitt Lymphoma Virus,E-B Virus,EBV,Epstein-Barr Virus,Human Herpesvirus 4,Infectious Mononucleosis Virus,Burkitt's Lymphoma Virus,HHV-4,Herpesvirus 4 (gamma), Human,Burkitts Lymphoma Virus,E B Virus,E-B Viruses,Epstein Barr Virus,Herpesvirus, Burkitt,Infectious Mononucleosis Viruses,Lymphoma Virus, Burkitt,Mononucleosis Virus, Infectious,Mononucleosis Viruses, Infectious
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D014059 Tongue A muscular organ in the mouth that is covered with pink tissue called mucosa, tiny bumps called papillae, and thousands of taste buds. The tongue is anchored to the mouth and is vital for chewing, swallowing, and for speech. Tongues
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications
D015967 Gene Expression Regulation, Viral Any of the processes by which cytoplasmic factors influence the differential control of gene action in viruses. Regulation of Gene Expression, Viral,Viral Gene Expression Regulation,Regulation, Gene Expression, Viral

Related Publications

J Webster-Cyriaque, and N Raab-Traub
May 1992, Histopathology,
J Webster-Cyriaque, and N Raab-Traub
August 1993, Virology,
J Webster-Cyriaque, and N Raab-Traub
December 1994, Journal of virology,
J Webster-Cyriaque, and N Raab-Traub
March 1996, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc,
J Webster-Cyriaque, and N Raab-Traub
July 1991, The American journal of pathology,
J Webster-Cyriaque, and N Raab-Traub
January 1990, Journal of virology,
J Webster-Cyriaque, and N Raab-Traub
January 2005, Brazilian oral research,
J Webster-Cyriaque, and N Raab-Traub
December 1991, The Journal of general virology,
J Webster-Cyriaque, and N Raab-Traub
April 1989, Oral surgery, oral medicine, and oral pathology,
Copied contents to your clipboard!