Postsynaptic current mediated by metabotropic glutamate receptors in cerebellar Purkinje cells. 1998

F Tempia, and M C Miniaci, and D Anchisi, and P Strata
Department of Neuroscience, University of Turin, 10125 Turin, Italy.

In rat cerebellar slices, repetitive parallel fiber stimulation evokes an inward, postsynaptic current in Purkinje cells with a fast component mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptors and a slower component mediated by metabotropic glutamate receptors (mGluR). The mGluR-mediated excitatory postsynaptic current (mGluR-EPSC) is evoked selectively by parallel fiber stimulation; climbing fiber stimulation is ineffective. The mGluR-EPSC is elicited most effectively with increasing frequencies of parallel fiber stimulation, from a threshold of 10 Hz to a maximum response at approximately 100 Hz. The amplitude of the mGluR-EPSC is a linear function of the number of stimulus pulses without any apparent saturation, even with >10 pulses. Thus mGluRs at the parallel fiber-Purkinje cell synapse can function as linear detectors of the number of spikes in a burst of activity in parallel fibers. The mGluR-EPSC is present from postnatal day 15 and persists into adulthood. It is inhibited by the generic mGluR antagonist (RS)-a-methyl-4-carboxyphenylglycine and by the group I mGluR antagonist (RS)-1-aminoindan-1,5-dicarboxylic acid at a concentration selective for mGluR1. Although the intracellular transduction pathway involves a G protein, the putative mediators of mGluR1 (phospholipase C and protein kinase C) are not directly involved, indicating that the mGluR-EPSC studied here is mediated by a different and still unidentified second-messenger pathway. Heparin, a nonselective antagonist of inositol-trisphosphate (IP3) receptors, has no significant effect on the mGluR-EPSC, suggesting that also IP3 might be not required for the response. Buffering intracellular Ca2+ with a high concentration of bis-(o-aminophenoxy)-N,N,N', N'-tetraacetic acid partially inhibits the mGluR-EPSC, indicating that Ca2+ is not directly responsible for the response but that resting Ca2+ levels exert a tonic potentiating effect on the mGluR-EPSC.

UI MeSH Term Description Entries
D008297 Male Males
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D010738 Type C Phospholipases A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS. Lecithinase C,Phospholipase C,Phospholipases, Type C,Phospholipases C
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011689 Purkinje Cells The output neurons of the cerebellar cortex. Purkinje Cell,Purkinje Neuron,Purkyne Cell,Cell, Purkinje,Cell, Purkyne,Cells, Purkinje,Cells, Purkyne,Neuron, Purkinje,Neurons, Purkinje,Purkinje Neurons,Purkyne Cells
D011810 Quinoxalines Quinoxaline
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005260 Female Females

Related Publications

F Tempia, and M C Miniaci, and D Anchisi, and P Strata
April 2002, Journal of neurophysiology,
F Tempia, and M C Miniaci, and D Anchisi, and P Strata
January 1993, Neuropharmacology,
F Tempia, and M C Miniaci, and D Anchisi, and P Strata
June 2000, The European journal of neuroscience,
F Tempia, and M C Miniaci, and D Anchisi, and P Strata
December 1996, The Journal of physiology,
F Tempia, and M C Miniaci, and D Anchisi, and P Strata
November 2007, Neuroscience research,
F Tempia, and M C Miniaci, and D Anchisi, and P Strata
December 2002, Neuron,
F Tempia, and M C Miniaci, and D Anchisi, and P Strata
December 1993, Annals of the New York Academy of Sciences,
F Tempia, and M C Miniaci, and D Anchisi, and P Strata
September 2009, Neuroscience,
Copied contents to your clipboard!