Excitability of the squid giant axon revisited. 1998

J R Clay
Laboratory of Neurophysiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA.

The electrical properties of the giant axon from the common squid Loligo pealei have been reexamined. The primary motivation for this work was the observation that the refractoriness of the axon was significantly greater than the predictions of the standard model of nerve excitability. In particular, the axon fired only once in response to a sustained, suprathreshold stimulus. Similarly, only a single action potential was observed in response to the first pulse of a train of 1-ms duration current pulses, when the pulses were separated in time by approximately 10 ms. The axon was refractory to all subsequent pulses in the train. The underlying mechanisms for these results concern both the sodium and potassium ion currents INa and IK. Specifically, Na+ channel activation has long been known to be coupled to inactivation during a depolarizing voltage-clamp step. This feature appears to be required to simulate the pulse train results in a revised model of nerve excitability. Moreover, the activation curve for IK has a significantly steeper voltage dependence, especially near its threshold (approximately -60 mV), than in the standard model, which contributes to reduced excitability, and the fully activated current-voltage relation for IK has a nonlinear, rather than a linear, dependence on driving force. An additional aspect of the revised model is accumulation/depeletion of K+ in the space between the axon and the glial cells surrounding the axon, which is significant even during a single action potential and which can account for the 15-20 mV difference between the potassium equilibrium potential EK and the maximum afterhyperpolarization of the action potential. The modifications in IK can also account for the shape of voltage changes near the foot of the action potential.

UI MeSH Term Description Entries
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D012684 Sensory Thresholds The minimum amount of stimulus energy necessary to elicit a sensory response. Sensory Threshold,Threshold, Sensory,Thresholds, Sensory
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel
D049832 Decapodiformes A superorder of CEPHALOPODS comprised of squid, cuttlefish, and their relatives. Their distinguishing feature is the modification of their fourth pair of arms into tentacles, resulting in 10 limbs. Cuttlefish,Illex,Sepiidae,Squid,Todarodes,Cuttlefishs,Decapodiforme,Illices,Squids,Todarode
D018408 Patch-Clamp Techniques An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used. Patch Clamp Technique,Patch-Clamp Technic,Patch-Clamp Technique,Voltage-Clamp Technic,Voltage-Clamp Technique,Voltage-Clamp Techniques,Whole-Cell Recording,Patch-Clamp Technics,Voltage-Clamp Technics,Clamp Technique, Patch,Clamp Techniques, Patch,Patch Clamp Technic,Patch Clamp Technics,Patch Clamp Techniques,Recording, Whole-Cell,Recordings, Whole-Cell,Technic, Patch-Clamp,Technic, Voltage-Clamp,Technics, Patch-Clamp,Technics, Voltage-Clamp,Technique, Patch Clamp,Technique, Patch-Clamp,Technique, Voltage-Clamp,Techniques, Patch Clamp,Techniques, Patch-Clamp,Techniques, Voltage-Clamp,Voltage Clamp Technic,Voltage Clamp Technics,Voltage Clamp Technique,Voltage Clamp Techniques,Whole Cell Recording,Whole-Cell Recordings

Related Publications

J R Clay
September 2003, Bio Systems,
J R Clay
August 1968, The American journal of physiology,
J R Clay
January 1971, Nihon seirigaku zasshi. Journal of the Physiological Society of Japan,
J R Clay
September 1963, Biophysical journal,
J R Clay
January 2001, Neuroscience,
J R Clay
December 1963, The Journal of physiology,
J R Clay
July 1941, The Journal of general physiology,
J R Clay
February 1973, Toxicon : official journal of the International Society on Toxinology,
Copied contents to your clipboard!