Regeneration of phasic motor axons on a crayfish tonic muscle: neuron specifies synapses. 1998

K M Krause, and J Pearce, and C K Govind
St. Thomas Aquinas College, Sparkill, New York 10976, USA.

Motor neurons are matched to their target muscles, often forming separate phasic and tonic systems as in the abdomen of crayfish where they are used for rapid escape and slow postural movements, respectively. To assess the role of motor neuron and muscle fiber in forming synapses we attempted a mismatch experiment by allotransplanting a phasic nerve attached to its ganglion to a denervated tonic muscle. Regenerating motor axons sprouted 10-30 branches (typical of phasic motor neurons, as tonic ones sprout far fewer branches) to reinnervate muscle fibers and form synapses that produced large excitatory postsynaptic potentials (typical of phasic motor neurons, as tonic synapses give small potentials). Therefore motor neurons, not muscle fibers, appear to specify one of the major properties of regenerating neuromuscular synapses.

UI MeSH Term Description Entries
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D010525 Peripheral Nerves The nerves outside of the brain and spinal cord, including the autonomic, cranial, and spinal nerves. Peripheral nerves contain non-neuronal cells and connective tissue as well as axons. The connective tissue layers include, from the outside to the inside, the epineurium, the perineurium, and the endoneurium. Endoneurium,Epineurium,Perineurium,Endoneuriums,Epineuriums,Nerve, Peripheral,Nerves, Peripheral,Perineuriums,Peripheral Nerve
D003400 Astacoidea A superfamily of various freshwater CRUSTACEA, in the infraorder Astacidea, comprising the crayfish. Common genera include Astacus and Procambarus. Crayfish resemble lobsters, but are usually much smaller. Astacus,Crayfish,Procambarus,Astacoideas,Crayfishs
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D019706 Excitatory Postsynaptic Potentials Depolarization of membrane potentials at the SYNAPTIC MEMBRANES of target neurons during neurotransmission. Excitatory postsynaptic potentials can singly or in summation reach the trigger threshold for ACTION POTENTIALS. EPSP,End Plate Potentials,Excitatory Postsynaptic Currents,Current, Excitatory Postsynaptic,Currents, Excitatory Postsynaptic,End Plate Potential,Excitatory Postsynaptic Current,Excitatory Postsynaptic Potential,Plate Potential, End,Plate Potentials, End,Postsynaptic Current, Excitatory,Postsynaptic Currents, Excitatory,Postsynaptic Potential, Excitatory,Postsynaptic Potentials, Excitatory,Potential, End Plate,Potential, Excitatory Postsynaptic,Potentials, End Plate,Potentials, Excitatory Postsynaptic

Related Publications

K M Krause, and J Pearce, and C K Govind
August 1993, Journal of neurobiology,
K M Krause, and J Pearce, and C K Govind
January 1997, The Journal of experimental biology,
K M Krause, and J Pearce, and C K Govind
November 2000, Journal of neurobiology,
K M Krause, and J Pearce, and C K Govind
January 2003, Journal of neurocytology,
K M Krause, and J Pearce, and C K Govind
July 1997, Journal of neurobiology,
K M Krause, and J Pearce, and C K Govind
July 2001, The Journal of comparative neurology,
K M Krause, and J Pearce, and C K Govind
September 1967, Canadian journal of zoology,
K M Krause, and J Pearce, and C K Govind
July 2008, The Journal of experimental biology,
K M Krause, and J Pearce, and C K Govind
July 1997, Journal of neurophysiology,
Copied contents to your clipboard!