DNA-PK is essential only for coding joint formation in V(D)J recombination. 1998

P Kulesza, and M R Lieber
Department of Pathology, Norris Comprehensive Cancer Center, Room 5425, University of Southern California School of Medicine, 1441 Eastlake Avenue, Los Angeles, CA 9003, USA.

The analysis of the role of DNA-dependent protein kinase (DNA-PK) in DNA double-strand break repair and V(D)J recombination is based primarily on studies of murine scid, in which only the C-terminal 2% of the protein is deleted and the remaining 98% is expressed at levels that are within an order of magnitude of normal. In murine scid, signal joint formation is observed at normal levels, even though coding joint formation is reduced over three orders of magnitude. In contrast, a closely associated protein, Ku, is necessary for both coding and signal joint formation. Based on these observations, a reasonable hypothesis has been that absence of the DNA-PK protein (rather than merely its C-terminal 2% truncation) would ablate signal joint formation along with coding joint formation. In fact, a study of equine SCID, in which there is a much larger truncation of the DNA-PK protein, has suggested that signal joints do fail to form. In our current study, we have analyzed signal and coding joint formation in a malignant glioma cell line, M059J, which was previously shown to be deficient in DNA-PK. Our quantitative analysis shows that full-length protein levels are reduced at least 200-fold, to a level that is undetectable, yet signal joint formation occurs at wild-type levels. This result demonstrates that at least this form of non-homologous DNA end joining can occur in the absence of DNA-PK.

UI MeSH Term Description Entries
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005910 Glioma Benign and malignant central nervous system neoplasms derived from glial cells (i.e., astrocytes, oligodendrocytes, and ependymocytes). Astrocytes may give rise to astrocytomas (ASTROCYTOMA) or glioblastoma multiforme (see GLIOBLASTOMA). Oligodendrocytes give rise to oligodendrogliomas (OLIGODENDROGLIOMA) and ependymocytes may undergo transformation to become EPENDYMOMA; CHOROID PLEXUS NEOPLASMS; or colloid cysts of the third ventricle. (From Escourolle et al., Manual of Basic Neuropathology, 2nd ed, p21) Glial Cell Tumors,Malignant Glioma,Mixed Glioma,Glial Cell Tumor,Glioma, Malignant,Glioma, Mixed,Gliomas,Gliomas, Malignant,Gliomas, Mixed,Malignant Gliomas,Mixed Gliomas,Tumor, Glial Cell,Tumors, Glial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012334 RNA, Neoplasm RNA present in neoplastic tissue. Neoplasm RNA
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

P Kulesza, and M R Lieber
November 1997, Molecular and cellular biology,
P Kulesza, and M R Lieber
August 1997, Immunity,
P Kulesza, and M R Lieber
July 1993, Molecular and cellular biology,
P Kulesza, and M R Lieber
December 2020, Molecular immunology,
P Kulesza, and M R Lieber
November 1993, Molecular and cellular biology,
P Kulesza, and M R Lieber
November 1996, Proceedings of the National Academy of Sciences of the United States of America,
P Kulesza, and M R Lieber
October 1995, Trends in biochemical sciences,
Copied contents to your clipboard!