Fast to slow transformation of denervated and electrically stimulated rat muscle. 1998

A Windisch, and K Gundersen, and M J Szabolcs, and H Gruber, and T Lømo
Institute for Anatomy, University of Vienna, Austria.

1. Denervated fast extensor digitorum longus (EDL) muscles of adult rats were stimulated electrically for up to 4 months with a slow pattern resembling the activity in soleus (Sol) motor units and examined with antibodies against myosin heavy chains (MHCs). 2. The normal EDL contained, on average, 45% type IIB, 29% type IIX, 23% type IIA and 3% type I fibres. All type IIB and almost all type IIX fibres disappeared during the first 3 weeks of stimulation. They were replaced by type IIA and type I fibres, whose percentages increased to about 75 and 15, respectively. Type IIA fibres remained at 75% for nearly 2 months and were then gradually replaced by type I fibres during the next 2 months. The transformation occurred sequentially in the order IIB/IIX-->IIA-->I, the first step (IIB/IIX-->IIA) occurring after a short delay (2 weeks) and the last step (IIA-->I in originally IIB or IIX fibres) after a long delay (> 2 months). During the transformation coexpression of MHCs occurred. 3. It appears that the transformation to type I fibres occurred in pre-existing type II fibres since no signs of fibre damage or regeneration were observed. 4. Normal EDL was also stimulated through an intact nerve with the same pattern for up to 37 days. The effects on fibre type distributions were identical to those observed in the denervated EDL. The result indicated that the Sol-like pattern of evoked muscle activity, rather than nerve-derived trophic influences or denervation per se, was primarily responsible for the fast to slow transformation.

UI MeSH Term Description Entries
D008297 Male Males
D009121 Muscle Denervation The resection or removal of the innervation of a muscle or muscle tissue. Denervation, Muscle,Denervations, Muscle,Muscle Denervations
D012038 Regeneration The physiological renewal, repair, or replacement of tissue. Endogenous Regeneration,Regeneration, Endogenous,Regenerations
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018482 Muscle, Skeletal A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles. Anterior Tibial Muscle,Gastrocnemius Muscle,Muscle, Voluntary,Plantaris Muscle,Skeletal Muscle,Soleus Muscle,Muscle, Anterior Tibial,Muscle, Gastrocnemius,Muscle, Plantaris,Muscle, Soleus,Muscles, Skeletal,Muscles, Voluntary,Skeletal Muscles,Tibial Muscle, Anterior,Voluntary Muscle,Voluntary Muscles
D018656 Muscle Fibers, Fast-Twitch Skeletal muscle fibers characterized by their expression of the Type II MYOSIN HEAVY CHAIN isoforms which have high ATPase activity and effect several other functional properties - shortening velocity, power output, rate of tension redevelopment. Several fast types have been identified. Muscle Fibers, Intermediate,Muscle Fibers, Type II,Muscle Fibers, White,Fast-Twitch Muscle Fiber,Fast-Twitch Muscle Fibers,Fiber, Fast-Twitch Muscle,Fiber, Intermediate Muscle,Fiber, White Muscle,Fibers, Fast-Twitch Muscle,Fibers, Intermediate Muscle,Fibers, White Muscle,Intermediate Muscle Fiber,Intermediate Muscle Fibers,Muscle Fiber, Fast-Twitch,Muscle Fiber, Intermediate,Muscle Fiber, White,Muscle Fibers, Fast Twitch,White Muscle Fiber,White Muscle Fibers
D018657 Muscle Fibers, Slow-Twitch Skeletal muscle fibers characterized by their expression of the Type I MYOSIN HEAVY CHAIN isoforms which have low ATPase activity and effect several other functional properties - shortening velocity, power output, rate of tension redevelopment. Muscle Fibers, Red,Muscle Fibers, Type I,Fiber, Red Muscle,Fiber, Slow-Twitch Muscle,Fibers, Red Muscle,Fibers, Slow-Twitch Muscle,Muscle Fiber, Red,Muscle Fiber, Slow-Twitch,Muscle Fibers, Slow Twitch,Red Muscle Fiber,Red Muscle Fibers,Slow-Twitch Muscle Fiber,Slow-Twitch Muscle Fibers

Related Publications

A Windisch, and K Gundersen, and M J Szabolcs, and H Gruber, and T Lømo
November 1996, Muscle & nerve,
A Windisch, and K Gundersen, and M J Szabolcs, and H Gruber, and T Lømo
April 1992, Pflugers Archiv : European journal of physiology,
A Windisch, and K Gundersen, and M J Szabolcs, and H Gruber, and T Lømo
May 1983, Archives of physical medicine and rehabilitation,
A Windisch, and K Gundersen, and M J Szabolcs, and H Gruber, and T Lømo
August 1988, The Journal of physiology,
A Windisch, and K Gundersen, and M J Szabolcs, and H Gruber, and T Lømo
December 1986, Experimental neurology,
A Windisch, and K Gundersen, and M J Szabolcs, and H Gruber, and T Lømo
December 1974, Biochemistry,
A Windisch, and K Gundersen, and M J Szabolcs, and H Gruber, and T Lømo
April 2000, Muscle & nerve,
A Windisch, and K Gundersen, and M J Szabolcs, and H Gruber, and T Lømo
September 1968, The American journal of physiology,
A Windisch, and K Gundersen, and M J Szabolcs, and H Gruber, and T Lømo
January 1985, Comparative biochemistry and physiology. B, Comparative biochemistry,
A Windisch, and K Gundersen, and M J Szabolcs, and H Gruber, and T Lømo
May 1972, Experimental neurology,
Copied contents to your clipboard!