Evaluation of the effects of risedronate on hepatic microsomal drug metabolizing enzyme activities following administration to rats for 14 days: lack of an induction response. 1998

B J Smith, and J K Hu, and W P Schwecke
Procter & Gamble Pharmaceuticals, Drug Safety Assessment Department, Mason, OH 45040-9462, USA.

Risedronate ([1-hydroxy-2-(3-pyridinyl)-ethylidene[bis]phosphonic acid] monosodium salt) was evaluated for induction of hepatic microsomal drug metabolizing enzymes in male and female Sprague Dawley rats (N = 4/sex/dose group). Main study animals received water (vehicle control), risedronate (0.1, 0.8, 4, or 16 mg/kg/day) or phenobarbital (80 mg/kg/day, positive control) by daily oral gavage for 14 consecutive days. Recovery study animals received water, risedronate (16 mg/kg/day) or phenobarbital (80 mg/kg/day) by daily oral gavage for 14 consecutive days and then were maintained drug-free for 14 days to evaluate the reversibility of any observed effects. At the conclusion of each study the animals were sacrificed, the liver removed, weighed and the microsomal subcellular fraction prepared. The hepatic microsomal fraction was then evaluated for protein content, cytochrome P450, and the activities of aniline hydroxylase, aminopyrine N-demethylase, ethoxycoumarin O-deethylase and p-nitrophenol UDP-glucuronosyltransferase. Risedronate was well tolerated during the dosing phase of the study as evidenced by clinical observations, body weight gain and food consumption which were not significantly different from the vehicle controls. Risedronate did not significantly increase (P > 0.05) liver weight, liver/body weight ratio, protein content, P450, aniline hydroxylase, aminopyrine N-demethylase, ethoxycoumarin O-deethylase or p-nitrophenol UDP-glucuronosyltransferase in rats of either sex when compared to vehicle controls. As expected, the hepatic microsomal enzyme inducer phenobarbital significantly increased (P < 0.05) liver weight, liver/body weight ratio, protein content (males only), P450, aniline hydroxylase (males only), aminopyrine N-demethylase (males only), ethoxycoumarin O-deethylase and p-nitrophenol UDP-glucuronosyltransferase in rats relative to vehicle controls. Following the 14 day drug-free recovery period the induction parameters increased by phenobarbital reversed to vehicle control levels. The results obtained in this well controlled study indicate that risedronate is not an inducer of hepatic microsomal drug metabolizing enzymes in the rat.

UI MeSH Term Description Entries
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009929 Organ Size The measurement of an organ in volume, mass, or heaviness. Organ Volume,Organ Weight,Size, Organ,Weight, Organ
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D005260 Female Females
D000068296 Risedronic Acid A pyridine and diphosphonic acid derivative that acts as a CALCIUM CHANNEL BLOCKER and inhibits BONE RESORPTION. Bisphosphonate Risedronate Sodium,1-Hydroxy-2-(3-pyridyl)ethylidene diphosphonate,2-(3-pyridinyl)-1-hydroxyethylidene-bisphosphonate,2-(3-pyridinyl)-1-hydroxyethylidenebisphosphonate,Actonel,Atelvia,Risedronate,Risedronate Sodium,Risedronic Acid, Monosodium Salt,Risedronate Sodium, Bisphosphonate,Sodium, Bisphosphonate Risedronate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012968 Etidronic Acid A diphosphonate which affects calcium metabolism. It inhibits ectopic calcification and slows down bone resorption and bone turnover. EHDP,Ethanehydroxydiphosphonate,Etidronate,Etidronate Disodium,Sodium Etidronate,(1-hydroxyethylene)diphosphonic acid,(1-hydroxyethylene)diphosphonic acid, Tetrapotassium Salt,1,1-hydroxyethylenediphosphonate,1-Hydroxyethane-1,1-Diphosphonate,1-Hydroxyethylidene-1,1-Bisphosphonate,Dicalcium EHDP,Dicalcium Etidronate,Didronel,Disodium 1-Hydroxyethylene Diphosphonate,Disodium Etidronate,Ethanehydroxyphosphate,Etidronate, Tetrapotassium Salt,HEDP,HEDSPA,Hydroxyethanediphosphonate,Hydroxyethylidene Diphosphonic Acid,Phosphonic acid, (1-hydroxyethylidene)bis-, disodium salt,Xidifon,Xidiphon,Xydiphone,1 Hydroxyethane 1,1 Diphosphonate,1 Hydroxyethylidene 1,1 Bisphosphonate,1,1 hydroxyethylenediphosphonate,1-Hydroxyethylene Diphosphonate, Disodium,Diphosphonate, Disodium 1-Hydroxyethylene,Diphosphonic Acid, Hydroxyethylidene,Disodium 1 Hydroxyethylene Diphosphonate,EHDP, Dicalcium,Etidronate, Dicalcium,Etidronate, Disodium,Etidronate, Sodium,Salt Etidronate, Tetrapotassium,Tetrapotassium Salt Etidronate
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D015262 Xenobiotics Chemical substances that are foreign to the biological system. They include naturally occurring compounds, drugs, environmental agents, carcinogens, insecticides, etc. Xenobiotic

Related Publications

B J Smith, and J K Hu, and W P Schwecke
June 1983, Japanese journal of pharmacology,
B J Smith, and J K Hu, and W P Schwecke
December 1996, Journal of toxicology and environmental health,
B J Smith, and J K Hu, and W P Schwecke
January 2004, Journal of medicinal food,
B J Smith, and J K Hu, and W P Schwecke
October 1974, Journal of biochemistry,
B J Smith, and J K Hu, and W P Schwecke
January 1974, Japanese journal of pharmacology,
B J Smith, and J K Hu, and W P Schwecke
August 2010, Toxicologic pathology,
B J Smith, and J K Hu, and W P Schwecke
January 1990, The Journal of pharmacy and pharmacology,
B J Smith, and J K Hu, and W P Schwecke
March 1962, Biochemical pharmacology,
B J Smith, and J K Hu, and W P Schwecke
May 1996, Drug metabolism and disposition: the biological fate of chemicals,
Copied contents to your clipboard!