Characterization of human glioblastoma xenograft growth in athymic mice. 1998

T Ozawa, and J Wang, and L J Hu, and K R Lamborn, and A W Bollen, and D F Deen
Department of Neurological Surgery, School of Medicine, University of California, San Francisco 94143-0520, USA.

BACKGROUND-MATERIALS-METHODS: We initiated the studies reported in this paper to establish baseline growth data for tumors produced by several human brain tumor cell lines. Female athymic mice were injected with five established human glioblastoma cell lines subcutaneously. We optimized implantation conditions in SF-767 cells by evaluating tumor take and growth characteristics, and resulting growth data were compared to 2 other cell lines. CONCLUSIONS Three (SF-767, U-251 MG-NCI, and U-87 MG) of the 5 cell lines produced solid, ellipsoid tumors. For SF-767 cells, the best tumor growth parameters were achieved when 3.0 x 10(6) cells in 0.1 ml medium containing fetal calf serum were injected unilaterally. These conditions produced a high percentage of usable tumors (77.6%) that were detectable approximately 3 days after implantation and reached a size of 100 mm3 in 23 days. Comparison of several growth characteristics of the tumors produced by the 3 cell lines revealed that SF-767 tumors displayed the most uniform growth rates, the fastest doubling times, and the most uniform usable group of tumors (> 100 mm3). U-87 MG and U-251 MG-NCI had a similar histopathologic appearance while SF-767 had a different histology. Our results indicate that these 3 human glioblastoma cells produce flank tumors that exhibit decidedly different growth parameters. We are currently using all 3 of these human brain tumor xenograft models in other in vivo studies.

UI MeSH Term Description Entries
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008819 Mice, Nude Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses. Athymic Mice,Mice, Athymic,Nude Mice,Mouse, Athymic,Mouse, Nude,Athymic Mouse,Nude Mouse
D009368 Neoplasm Transplantation Experimental transplantation of neoplasms in laboratory animals for research purposes. Transplantation, Neoplasm,Neoplasm Transplantations,Transplantations, Neoplasm
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D005260 Female Females
D005909 Glioblastoma A malignant form of astrocytoma histologically characterized by pleomorphism of cells, nuclear atypia, microhemorrhage, and necrosis. They may arise in any region of the central nervous system, with a predilection for the cerebral hemispheres, basal ganglia, and commissural pathways. Clinical presentation most frequently occurs in the fifth or sixth decade of life with focal neurologic signs or seizures. Astrocytoma, Grade IV,Giant Cell Glioblastoma,Glioblastoma Multiforme,Astrocytomas, Grade IV,Giant Cell Glioblastomas,Glioblastoma, Giant Cell,Glioblastomas,Glioblastomas, Giant Cell,Grade IV Astrocytoma,Grade IV Astrocytomas
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014183 Transplantation, Heterologous Transplantation between animals of different species. Xenotransplantation,Heterograft Transplantation,Heterografting,Heterologous Transplantation,Xenograft Transplantation,Xenografting,Transplantation, Heterograft,Transplantation, Xenograft
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

T Ozawa, and J Wang, and L J Hu, and K R Lamborn, and A W Bollen, and D F Deen
February 1979, British journal of cancer,
T Ozawa, and J Wang, and L J Hu, and K R Lamborn, and A W Bollen, and D F Deen
November 2009, Anticancer research,
T Ozawa, and J Wang, and L J Hu, and K R Lamborn, and A W Bollen, and D F Deen
October 1999, Cancer,
T Ozawa, and J Wang, and L J Hu, and K R Lamborn, and A W Bollen, and D F Deen
April 1990, Neuropathology and applied neurobiology,
T Ozawa, and J Wang, and L J Hu, and K R Lamborn, and A W Bollen, and D F Deen
May 1980, British journal of cancer,
T Ozawa, and J Wang, and L J Hu, and K R Lamborn, and A W Bollen, and D F Deen
October 1991, Journal of the National Cancer Institute,
T Ozawa, and J Wang, and L J Hu, and K R Lamborn, and A W Bollen, and D F Deen
October 2006, The Journal of nutrition,
T Ozawa, and J Wang, and L J Hu, and K R Lamborn, and A W Bollen, and D F Deen
April 1991, The Journal of otolaryngology,
T Ozawa, and J Wang, and L J Hu, and K R Lamborn, and A W Bollen, and D F Deen
February 2011, The British journal of nutrition,
T Ozawa, and J Wang, and L J Hu, and K R Lamborn, and A W Bollen, and D F Deen
July 1994, Acta oto-laryngologica,
Copied contents to your clipboard!