Magnesium restriction induces granulocytic differentiation and expression of p27Kip1 in human leukemic HL-60 cells. 1998

V Covacci, and N Bruzzese, and A Sgambato, and A Di Francesco, and M A Russo, and F I Wolf, and A Cittadini
Institute of General Pathology, Giovanni XXIII Cancer Center, School of Medicine, Catholic University, Rome, Italy.

When cultured in Mg restricted medium, human leukemic HL-60 cells develop morphological and functional granulocytic differentiation. In 0.03 mM Mg, cells display the distinctive features of differentiation, without appreciable inhibition of proliferation. In 0.01 mM Mg, cells show terminal differentiation, accompanied by clear inhibition of proliferation. Such cells accumulate in the G0/G1 phase and subsequently die via apoptosis, similar to HL-60 cells that have been induced to differentiate by DMSO. These phenotypic changes are associated with a marked increase in the expression level of the cyclin dependent kinase inhibitor p27Kip1. Cyclin E expression is also slightly increased in Mg restricted cells, whereas no changes are observed in the expression level of cyclin D1. We also show that during differentiation cell total Mg decreases, whereas [Mg2+]i increases in both Mg-depleted and DMSO-treated cells. These data suggest that the maturation process is paralleled by a redistribution of intracellular Mg, leading to a shift from the bound to the free form. These changes could modulate the kinetics of Mg-dependent enzyme(s) that are involved in the control of the differentiation pathway. We propose that this model may represent an useful tool for the study of the mechanisms of cell differentiation and related events, such as aging and death.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008869 Microtubule-Associated Proteins High molecular weight proteins found in the MICROTUBULES of the cytoskeletal system. Under certain conditions they are required for TUBULIN assembly into the microtubules and stabilize the assembled microtubules. Ensconsin,Epithelial MAP, 115 kDa,Epithelial Microtubule-Associate Protein, 115 kDa,MAP4,Microtubule Associated Protein,Microtubule Associated Protein 4,Microtubule Associated Protein 7,Microtubule-Associated Protein,Microtubule-Associated Protein 7,E-MAP-115,MAP1 Microtubule-Associated Protein,MAP2 Microtubule-Associated Protein,MAP3 Microtubule-Associated Protein,Microtubule Associated Proteins,Microtubule-Associated Protein 1,Microtubule-Associated Protein 2,Microtubule-Associated Protein 3,7, Microtubule-Associated Protein,Associated Protein, Microtubule,E MAP 115,Epithelial Microtubule Associate Protein, 115 kDa,MAP1 Microtubule Associated Protein,MAP2 Microtubule Associated Protein,MAP3 Microtubule Associated Protein,Microtubule Associated Protein 1,Microtubule Associated Protein 2,Microtubule Associated Protein 3,Microtubule-Associated Protein, MAP1,Microtubule-Associated Protein, MAP2,Microtubule-Associated Protein, MAP3,Protein 7, Microtubule-Associated,Protein, Microtubule Associated,Protein, Microtubule-Associated
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D004121 Dimethyl Sulfoxide A highly polar organic liquid, that is used widely as a chemical solvent. Because of its ability to penetrate biological membranes, it is used as a vehicle for topical application of pharmaceuticals. It is also used to protect tissue during CRYOPRESERVATION. Dimethyl sulfoxide shows a range of pharmacological activity including analgesia and anti-inflammation. DMSO,Dimethyl Sulphoxide,Dimethylsulfoxide,Dimethylsulphinyl,Dimethylsulphoxide,Dimexide,Rheumabene,Rimso,Rimso 100,Rimso-50,Sclerosol,Sulfinylbis(methane),Rimso 50,Rimso50,Sulfoxide, Dimethyl,Sulphoxide, Dimethyl
D006098 Granulocytes Leukocytes with abundant granules in the cytoplasm. They are divided into three groups according to the staining properties of the granules: neutrophilic, eosinophilic, and basophilic. Mature granulocytes are the NEUTROPHILS; EOSINOPHILS; and BASOPHILS. Granulocyte
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000227 Adenine Nucleotides Adenine Nucleotide,Adenosine Phosphate,Adenosine Phosphates,Nucleotide, Adenine,Nucleotides, Adenine,Phosphate, Adenosine,Phosphates, Adenosine

Related Publications

V Covacci, and N Bruzzese, and A Sgambato, and A Di Francesco, and M A Russo, and F I Wolf, and A Cittadini
April 1994, Blood,
V Covacci, and N Bruzzese, and A Sgambato, and A Di Francesco, and M A Russo, and F I Wolf, and A Cittadini
July 1984, Journal of cellular physiology,
V Covacci, and N Bruzzese, and A Sgambato, and A Di Francesco, and M A Russo, and F I Wolf, and A Cittadini
February 1995, Experimental hematology,
V Covacci, and N Bruzzese, and A Sgambato, and A Di Francesco, and M A Russo, and F I Wolf, and A Cittadini
January 2022, Nutrition and cancer,
V Covacci, and N Bruzzese, and A Sgambato, and A Di Francesco, and M A Russo, and F I Wolf, and A Cittadini
August 2002, Archives of pharmacal research,
V Covacci, and N Bruzzese, and A Sgambato, and A Di Francesco, and M A Russo, and F I Wolf, and A Cittadini
December 2002, The Journal of biological chemistry,
V Covacci, and N Bruzzese, and A Sgambato, and A Di Francesco, and M A Russo, and F I Wolf, and A Cittadini
February 2005, Anti-cancer drugs,
V Covacci, and N Bruzzese, and A Sgambato, and A Di Francesco, and M A Russo, and F I Wolf, and A Cittadini
May 1999, Journal of cellular biochemistry,
V Covacci, and N Bruzzese, and A Sgambato, and A Di Francesco, and M A Russo, and F I Wolf, and A Cittadini
November 1980, Blood,
V Covacci, and N Bruzzese, and A Sgambato, and A Di Francesco, and M A Russo, and F I Wolf, and A Cittadini
April 2007, Cancer research,
Copied contents to your clipboard!