Apoptosis in Daudi human B cells in response to benzo[a]pyrene and benzo[a]pyrene-7,8-dihydrodiol. 1998

V M Salas, and S W Burchiel
Toxicology Program, The University of New Mexico College of Pharmacy, Albuquerque, New Mexico 87131-5691, USA.

Numerous studies have demonstrated an association between polycyclic aromatic hydrocarbons (PAHs) and lymphocyte toxicity. The present study shows that, consistent with its effects on Ca2+ homeostasis, benzo[a]pyrene (BaP) induces apoptosis in Daudi cells. Terminal deoxynucleotidal transferase-mediated dUTP-biotin nick end labeling (TUNEL) analysis at 18 h revealed a significant increase in the number of cells undergoing apoptosis in response to BaP (75%), BaP-7, 8-dihydrodiol (110%), and BaP-7,8-9,10-diol epoxide (BPDE) (215%) over DMSO vehicle control cultures. By 36 h, the trend toward increasing numbers of apoptotic cells continued with the parent compound producing a 125% increase over control values and the 7, 8-dihydrodiol and BPDE metabolites producing 195% and 370% increases over controls, respectively. DNA fragmentation assays demonstrated the presence of internucleosomal cleavage products consistent with the increasing numbers of TUNEL-positive cells responding to PAHs at 18 and 36 h. Analysis of poly(ADP-ribose) polymerase (PARP) protein in BaP- and BaP-7,8-dihydrodiol-treated cells strongly suggested the involvement of cysteine proteases by the appearance of an 85-kD fragment derived from hydrolytic cleavage of PARP, a phenomenon that has been associated with apoptosis in many systems. Immunoblot analysis demonstrated that both BaP and its 7,8-dihydrodiol metabolite affected a pathway involving Bcl-2 and Bax cytosolic proteins. Daudi cells undergoing apoptosis at 36 h in response to 10 microM BaP, the parent compound, expressed moderately reduced amounts of Bcl-2 (78% of vehicle controls). At the same time point, the 7,8-dihydrodiol and BDPE metabolites at 3 microM resulted in Bcl-2 protein expression that was 52% of that seen in vehicle controls. Parallel samples analyzed for expression of Bax protein displayed a 130% increase over vehicle control in Bax expression in response to the parent compound, while the 7,8-dihydrodiol metabolite produced a 257% increase in Bax. Furthermore, the effects on increased Bax expression were observed as early as 3 h after PAH exposure. The apoptotic response to PAHs in Daudi cells was sensitive to 4-h pretreatment with 0.3 microM alpha-naphthoflavone (ANF), a known inhibitor of cytochrome P450. In TUNEL assays of cells exposed to PAHs following pretreatment with ANF, at 18 h there was a significant reduction in the number of cells undergoing apoptosis in response to ANF compared to cells that were not pretreated with the compound. The effect of the parent compound at 18 h was completely blocked with ANF pretreatment, while ANF exerted a relatively weaker, but significant, effect on BaP-7, 8-dihydrodiol-induced apoptosis. With regard to modulation of expression of apoptosis-related proteins, Bax expression was restored to that observed in vehicle-control cultures at all time points tested (3, 18, and 36 h). Bcl-2 expression was most responsive to ANF at later time points following PAH exposure (18 and 36 h); however, Bcl-2 appeared to be more sensitive to the effects of ANF alone. Taken together, these data suggest that modulation of Bcl-2 family proteins, perhaps secondary to altered Ca2+ homeostasis, plays an important role in human B cell apoptosis induced by BaP.

UI MeSH Term Description Entries
D009320 Atrial Natriuretic Factor A potent natriuretic and vasodilatory peptide or mixture of different-sized low molecular weight PEPTIDES derived from a common precursor and secreted mainly by the HEART ATRIUM. All these peptides share a sequence of about 20 AMINO ACIDS. ANF,ANP,Atrial Natriuretic Peptide,Atrial Natriuretic Peptides,Atriopeptins,Auriculin,Natriuretic Peptides, Atrial,ANF (1-126),ANF (1-28),ANF (99-126),ANF Precursors,ANP (1-126),ANP (1-28),ANP Prohormone (99-126),ANP-(99-126),Atrial Natriuretic Factor (1-126),Atrial Natriuretic Factor (1-28),Atrial Natriuretic Factor (99-126),Atrial Natriuretic Factor Precursors,Atrial Natriuretic Factor Prohormone,Atrial Natriuretic Peptide (1-126),Atrial Pronatriodilatin,Atriopeptigen,Atriopeptin (1-28),Atriopeptin (99-126),Atriopeptin 126,Atriopeptin Prohormone (1-126),Cardiodilatin (99-126),Cardiodilatin Precursor,Cardionatrin I,Cardionatrin IV,Prepro-ANP,Prepro-CDD-ANF,Prepro-Cardiodilatin-Atrial Natriuretic Factor,Pro-ANF,ProANF,Proatrial Natriuretic Factor,Pronatriodilatin,alpha ANP,alpha-ANP Dimer,alpha-Atrial Natriuretic Peptide,beta-ANP,beta-Atrial Natriuretic Peptide,gamma ANP (99-126),gamma-Atrial Natriuretic Peptide,Natriuretic Peptide, Atrial,Peptide, Atrial Natriuretic,Peptides, Atrial Natriuretic,Prepro ANP,Prepro CDD ANF,Prepro Cardiodilatin Atrial Natriuretic Factor,Pro ANF,alpha ANP Dimer,alpha Atrial Natriuretic Peptide,beta ANP,beta Atrial Natriuretic Peptide,gamma Atrial Natriuretic Peptide
D011065 Poly(ADP-ribose) Polymerases Enzymes that catalyze the transfer of multiple ADP-RIBOSE groups from nicotinamide-adenine dinucleotide (NAD) onto protein targets, thus building up a linear or branched homopolymer of repeating ADP-ribose units i.e., POLY ADENOSINE DIPHOSPHATE RIBOSE. ADP-Ribosyltransferase (Polymerizing),Poly ADP Ribose Polymerase,Poly(ADP-Ribose) Synthase,Poly(ADP-ribose) Polymerase,PARP Polymerase,Poly ADP Ribose Transferase,Poly ADP-Ribose Synthase,Poly(ADP-Ribose) Transferase,Poly(ADPR) Polymerase,Poly(ADPribose) Polymerase,Poly ADP Ribose Synthase,Polymerase, PARP,Synthase, Poly ADP-Ribose
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004101 Dihydroxydihydrobenzopyrenes Benzopyrenes saturated in any two adjacent positions and substituted with two hydroxyl groups in any position. The majority of these compounds have carcinogenic or mutagenic activity. Benzopyrene Dihydrodiols,Dihydrobenzopyrene Diols,Dihydrodiolbenzopyrenes,Dihydrodiols, Benzopyrene,Diols, Dihydrobenzopyrene
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000071137 Poly (ADP-Ribose) Polymerase-1 A poly(ADP-ribose) polymerase that contains two ZINC FINGERS in its N-terminal DNA-binding region. It modifies NUCLEAR PROTEINS involved in chromatin architecture and BASE EXCISION REPAIR with POLY ADENOSINE DIPHOSPHATE RIBOSE. NAD+ ADP-ribosyltransferase-1,PARP-1 Protein,PARP1 Protein,Poly (ADP-Ribose) Synthase-1,NAD+ ADP ribosyltransferase 1,PARP 1 Protein
D001402 B-Lymphocytes Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation. B-Cells, Lymphocyte,B-Lymphocyte,Bursa-Dependent Lymphocytes,B Cells, Lymphocyte,B Lymphocyte,B Lymphocytes,B-Cell, Lymphocyte,Bursa Dependent Lymphocytes,Bursa-Dependent Lymphocyte,Lymphocyte B-Cell,Lymphocyte B-Cells,Lymphocyte, Bursa-Dependent,Lymphocytes, Bursa-Dependent
D001564 Benzo(a)pyrene A potent mutagen and carcinogen. It is a public health concern because of its possible effects on industrial workers, as an environmental pollutant, an as a component of tobacco smoke. 3,4-Benzopyrene,3,4-Benzpyrene,3,4 Benzopyrene,3,4 Benzpyrene

Related Publications

V M Salas, and S W Burchiel
March 1989, Biochemical and biophysical research communications,
Copied contents to your clipboard!