Phosphorylation and activation of cAMP-dependent protein kinase by phosphoinositide-dependent protein kinase. 1998

X Cheng, and Y Ma, and M Moore, and B A Hemmings, and S S Taylor
Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093-0654, USA.

Although phosphorylation of Thr-197 in the activation loop of the catalytic subunit of cAMP-dependent protein kinase (PKA) is an essential step for its proper biological function, the kinase responsible for this reaction in vivo has remained elusive. Using nonphosphorylated recombinant catalytic subunit as a substrate, we have shown that the phosphoinositide-dependent protein kinase, PDK1, expressed in 293 cells, phosphorylates and activates the catalytic subunit of PKA. The phosphorylation of PKA by PDK1 is rapid and is insensitive to PKI, the highly specific heat-stable protein kinase inhibitor. A mutant form of the catalytic subunit where Thr-197 was replaced with Asp was not a substrate for PDK1. In addition, phosphorylation of the catalytic subunit can be monitored immunochemically by using antibodies that recognize Thr-197 phosphorylated enzyme but not unphosphorylated enzyme or the Thr197Asp mutant. PDK1, or one of its homologs, is thus a likely candidate for the in vivo PKA kinase that phosphorylates Thr-197. This finding opens a new dimension in our thinking about this ubiquitous protein kinase and how it is regulated in the cell.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

X Cheng, and Y Ma, and M Moore, and B A Hemmings, and S S Taylor
February 1995, Biochemical and biophysical research communications,
X Cheng, and Y Ma, and M Moore, and B A Hemmings, and S S Taylor
January 2012, Vitamins and hormones,
X Cheng, and Y Ma, and M Moore, and B A Hemmings, and S S Taylor
January 1999, Annual review of biochemistry,
X Cheng, and Y Ma, and M Moore, and B A Hemmings, and S S Taylor
August 1981, The Journal of biological chemistry,
X Cheng, and Y Ma, and M Moore, and B A Hemmings, and S S Taylor
June 1995, The Journal of steroid biochemistry and molecular biology,
X Cheng, and Y Ma, and M Moore, and B A Hemmings, and S S Taylor
December 1987, Archives of biochemistry and biophysics,
X Cheng, and Y Ma, and M Moore, and B A Hemmings, and S S Taylor
January 2005, Virology,
X Cheng, and Y Ma, and M Moore, and B A Hemmings, and S S Taylor
October 1991, Biochemical and biophysical research communications,
X Cheng, and Y Ma, and M Moore, and B A Hemmings, and S S Taylor
January 1982, Advances in enzyme regulation,
X Cheng, and Y Ma, and M Moore, and B A Hemmings, and S S Taylor
March 2009, The Journal of biological chemistry,
Copied contents to your clipboard!