A putative vacuolar cargo receptor partially colocalizes with AtPEP12p on a prevacuolar compartment in Arabidopsis roots. 1998

A A Sanderfoot, and S U Ahmed, and D Marty-Mazars, and I Rapoport, and T Kirchhausen, and F Marty, and N V Raikhel
Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA.

Targeting of protein cargo to the vacuole/lysosome is a multistep process that appears to have conserved features between mammalian, yeast, and plant cells. In each case, some soluble vacuolar/lysosomal proteins are believed to be bound by transmembrane cargo receptors in the trans-Golgi network (TGN) that redirect these proteins into clathrin-coated vesicles. These vesicles then appear to be transported to the prevacuole/endosome by a trafficking machinery that requires components identified in other vesicle-targeting steps such as N-ethylmaleimide-sensitive factor (NSF), soluble NSF attachment protein (SNAP), SNAP receptors (SNAREs), rab-type GTPases, and Sec1p homologs. Two likely members of this trafficking machinery have been characterized from Arabidopsis thaliana: AtPEP12p, a t-SNARE that resides on a what we now call a prevacuolar compartment, and AtELP, a protein that shares many common features with mammalian and yeast transmembrane cargo receptors. Here, we have further investigated the intracellular distribution of AtELP. We have found that AtELP is located at the trans-Golgi of Arabidopsis root cells, and that its C terminus can preferentially interact in vitro with the mammalian TGN-specific AP-1 clathrin-adapter complex, suggesting a likely role in clathrin-coated, vesicle-directed trafficking at the TGN. Further, consistent with a role in trafficking of vacuolar cargo, we have found that AtELP partially colocalizes with AtPEP12p on a prevacuolar compartment.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D010940 Plant Proteins Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which PLANT PROTEINS, DIETARY is available. Plant Protein,Protein, Plant,Proteins, Plant
D002451 Cell Compartmentation A partitioning within cells due to the selectively permeable membranes which enclose each of the separate parts, e.g., mitochondria, lysosomes, etc. Cell Compartmentations,Compartmentation, Cell,Compartmentations, Cell
D006056 Golgi Apparatus A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) Golgi Complex,Apparatus, Golgi,Complex, Golgi
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill
D014617 Vacuoles Any spaces or cavities within a cell. They may function in digestion, storage, secretion, or excretion. Vacuole
D016253 Microscopy, Immunoelectron Microscopy in which the samples are first stained immunocytochemically and then examined using an electron microscope. Immunoelectron microscopy is used extensively in diagnostic virology as part of very sensitive immunoassays. Immunoelectron Microscopy,Microscopy, Immuno-Electron,Immuno-Electron Microscopies,Immuno-Electron Microscopy,Immunoelectron Microscopies,Microscopies, Immuno-Electron,Microscopies, Immunoelectron,Microscopy, Immuno Electron
D017360 Arabidopsis A plant genus of the family BRASSICACEAE that contains ARABIDOPSIS PROTEINS and MADS DOMAIN PROTEINS. The species A. thaliana is used for experiments in classical plant genetics as well as molecular genetic studies in plant physiology, biochemistry, and development. Arabidopsis thaliana,Cress, Mouse-ear,A. thaliana,A. thalianas,Arabidopses,Arabidopsis thalianas,Cress, Mouse ear,Cresses, Mouse-ear,Mouse-ear Cress,Mouse-ear Cresses,thaliana, A.,thaliana, Arabidopsis,thalianas, A.
D050765 Qa-SNARE Proteins A subfamily of Q-SNARE PROTEINS which occupy the same position as syntaxin 1A in the SNARE complex and which also are most similar to syntaxin 1A in their AMINO ACID SEQUENCE. This subfamily is also known as the syntaxins, although a few so called syntaxins are Qc-SNARES. Qa-SNAREs,Syntaxin,Syntaxin 10,Syntaxin 10 Protein,Syntaxin 11,Syntaxin 11 Protein,Syntaxin 13,Syntaxin 13 Protein,Syntaxin 17,Syntaxin 17 Protein,Syntaxin 18,Syntaxin 18 Protein,Syntaxin 1A Homologs,Syntaxin 3,Syntaxin 3 Protein,Syntaxin 3A,Syntaxin 3A Protein,Syntaxin 3B,Syntaxin 3B Protein,Syntaxin 3C,Syntaxin 3C Protein,Syntaxin 3D,Syntaxin 3D Protein,Syntaxin 4,Syntaxin 4 Protein,Syntaxin 5,Syntaxin 5 Protein,Syntaxin 6,Syntaxin 6 Protein,Syntaxin 7,Syntaxin 7 Protein,Syntaxin 8,Syntaxin 8 Protein,Syntaxin Protein,Syntaxin Proteins,Syntaxins,Protein, Syntaxin,Protein, Syntaxin 11,Proteins, Syntaxin,Qa SNARE Proteins,Qa SNAREs

Related Publications

A A Sanderfoot, and S U Ahmed, and D Marty-Mazars, and I Rapoport, and T Kirchhausen, and F Marty, and N V Raikhel
January 2014, Methods in molecular biology (Clifton, N.J.),
A A Sanderfoot, and S U Ahmed, and D Marty-Mazars, and I Rapoport, and T Kirchhausen, and F Marty, and N V Raikhel
May 2006, The Plant cell,
A A Sanderfoot, and S U Ahmed, and D Marty-Mazars, and I Rapoport, and T Kirchhausen, and F Marty, and N V Raikhel
January 2005, The Plant cell,
A A Sanderfoot, and S U Ahmed, and D Marty-Mazars, and I Rapoport, and T Kirchhausen, and F Marty, and N V Raikhel
November 1995, The Journal of cell biology,
A A Sanderfoot, and S U Ahmed, and D Marty-Mazars, and I Rapoport, and T Kirchhausen, and F Marty, and N V Raikhel
July 2012, Traffic (Copenhagen, Denmark),
A A Sanderfoot, and S U Ahmed, and D Marty-Mazars, and I Rapoport, and T Kirchhausen, and F Marty, and N V Raikhel
November 1999, Plant physiology,
A A Sanderfoot, and S U Ahmed, and D Marty-Mazars, and I Rapoport, and T Kirchhausen, and F Marty, and N V Raikhel
November 2013, Molecular plant,
A A Sanderfoot, and S U Ahmed, and D Marty-Mazars, and I Rapoport, and T Kirchhausen, and F Marty, and N V Raikhel
September 2014, The Plant cell,
A A Sanderfoot, and S U Ahmed, and D Marty-Mazars, and I Rapoport, and T Kirchhausen, and F Marty, and N V Raikhel
September 2004, Plant & cell physiology,
A A Sanderfoot, and S U Ahmed, and D Marty-Mazars, and I Rapoport, and T Kirchhausen, and F Marty, and N V Raikhel
January 2003, Journal of experimental botany,
Copied contents to your clipboard!