The human GNAS1 gene is imprinted and encodes distinct paternally and biallelically expressed G proteins. 1998

B E Hayward, and M Kamiya, and L Strain, and V Moran, and R Campbell, and Y Hayashizaki, and D T Bonthron
Human Genetics Unit, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom.

The GNAS1 gene encodes the alpha subunit of the G protein Gs, which couples receptor binding by several hormones to activation of adenylate cyclase. Null mutations of GNAS1 cause pseudohypoparathyroidism (PHP) type Ia, in which hormone resistance occurs in association with a characteristic osteodystrophy. The observation that PHP Ia almost always is inherited maternally has led to the suggestion that GNAS1 may be an imprinted gene. Here, we show that, although Gsalpha expression (directed by the promoter upstream of exon 1) is biallelic, GNAS1 is indeed imprinted in a promoter-specific fashion. We used parthenogenetic lymphocyte DNA to screen by restriction landmark genomic scanning for loci showing differential methylation between paternal and maternal alleles. This screen identified a region that was found to be methylated exclusively on a maternal allele and was located approximately 35 kb upstream of GNAS1 exon 1. This region contains three novel exons that are spliced into alternative GNAS1 mRNA species, including one exon that encodes the human homologue of the large G protein XLalphas. Transcription of these novel mRNAs is exclusively from the paternal allele in all tissues examined. The differential imprinting of separate protein products of GNAS1 therefore may contribute to the anomalous inheritance of PHP Ia.

UI MeSH Term Description Entries
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010312 Parthenogenesis A unisexual reproduction without the fusion of a male and a female gamete (FERTILIZATION). In parthenogenesis, an individual is formed from an unfertilized OVUM that did not complete MEIOSIS. Parthenogenesis occurs in nature and can be artificially induced. Arrhenotoky,Automixis,Thelytoky,Parthenogeneses
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011547 Pseudohypoparathyroidism A hereditary syndrome clinically similar to HYPOPARATHYROIDISM. It is characterized by HYPOCALCEMIA; HYPERPHOSPHATEMIA; and associated skeletal development impairment and caused by failure of response to PARATHYROID HORMONE rather than deficiencies. A severe form with resistance to multiple hormones is referred to as Type 1a and is associated with maternal mutant allele of the ALPHA CHAIN OF STIMULATORY G PROTEIN. Albright Hereditary Osteodystrophy,PHPIa,Albright Hereditary Osteodystrophy with Multiple Hormone Resistance,PHD Ib,PHD1b,PHP Ia,Pseudohypoparathyroidism Type 1B,Pseudohypoparathyroidism, Type Ia,Pseudohypoparathyroidism, Type Ib,Hereditary Osteodystrophy, Albright,Osteodystrophy, Albright Hereditary,Pseudohypoparathyroidism Type 1Bs,Pseudohypoparathyroidisms,Pseudohypoparathyroidisms, Type Ia,Pseudohypoparathyroidisms, Type Ib,Type Ia Pseudohypoparathyroidism,Type Ia Pseudohypoparathyroidisms,Type Ib Pseudohypoparathyroidism,Type Ib Pseudohypoparathyroidisms
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

B E Hayward, and M Kamiya, and L Strain, and V Moran, and R Campbell, and Y Hayashizaki, and D T Bonthron
December 1998, Proceedings of the National Academy of Sciences of the United States of America,
B E Hayward, and M Kamiya, and L Strain, and V Moran, and R Campbell, and Y Hayashizaki, and D T Bonthron
January 2004, Journal of human genetics,
B E Hayward, and M Kamiya, and L Strain, and V Moran, and R Campbell, and Y Hayashizaki, and D T Bonthron
December 2002, Mammalian genome : official journal of the International Mammalian Genome Society,
B E Hayward, and M Kamiya, and L Strain, and V Moran, and R Campbell, and Y Hayashizaki, and D T Bonthron
January 2023, Journal of animal science,
B E Hayward, and M Kamiya, and L Strain, and V Moran, and R Campbell, and Y Hayashizaki, and D T Bonthron
September 1995, Human molecular genetics,
B E Hayward, and M Kamiya, and L Strain, and V Moran, and R Campbell, and Y Hayashizaki, and D T Bonthron
April 2020, Molecular cell,
B E Hayward, and M Kamiya, and L Strain, and V Moran, and R Campbell, and Y Hayashizaki, and D T Bonthron
June 2004, Proceedings. Biological sciences,
B E Hayward, and M Kamiya, and L Strain, and V Moran, and R Campbell, and Y Hayashizaki, and D T Bonthron
May 2009, Genomics,
B E Hayward, and M Kamiya, and L Strain, and V Moran, and R Campbell, and Y Hayashizaki, and D T Bonthron
January 2002, The New England journal of medicine,
B E Hayward, and M Kamiya, and L Strain, and V Moran, and R Campbell, and Y Hayashizaki, and D T Bonthron
January 2008, Gene expression patterns : GEP,
Copied contents to your clipboard!