Synaptic signaling in an active central network only moderately changes passive membrane properties. 1998

M Raastad, and M Enríquez-Denton, and O Kiehn
Section of Neurophysiology, Department of Physiology, The Panum Institute, Blegdamsvej 3, 2200 Copenhagen N, Denmark. mortenra@basalmed.uio.no

The membrane resistance of mammalian central neurons may be dramatically reduced by synaptic events during network activity, thereby changing their integration properties. We have used the isolated neonatal rat spinal cord to provide measurements of the effect of synaptic signaling on passive membrane properties during network activity. Synaptic signaling could take place during fictive locomotor activity with only modest (on average 35%) reduction of the input resistance (Rin) and of the cell's charging time constant (tauin). Individual synaptic signals, however, often introduced a peak conductance that was greater than the input conductance (Gin = 1/Rin) without synaptic activity. The combination of moderate average synaptic conductance and large conductance of individual synaptic signals suggests that individual presynaptic neurons have large but short-lasting influence on the integration properties of postsynaptic neurons.

UI MeSH Term Description Entries
D008124 Locomotion Movement or the ability to move from one place or another. It can refer to humans, vertebrate or invertebrate animals, and microorganisms. Locomotor Activity,Activities, Locomotor,Activity, Locomotor,Locomotor Activities
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords

Related Publications

M Raastad, and M Enríquez-Denton, and O Kiehn
August 2006, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M Raastad, and M Enríquez-Denton, and O Kiehn
January 1985, Brain research,
M Raastad, and M Enríquez-Denton, and O Kiehn
February 1987, The Journal of physiology,
M Raastad, and M Enríquez-Denton, and O Kiehn
August 2007, PloS one,
M Raastad, and M Enríquez-Denton, and O Kiehn
April 2004, The Journal of physiology,
M Raastad, and M Enríquez-Denton, and O Kiehn
August 1986, The American journal of physiology,
M Raastad, and M Enríquez-Denton, and O Kiehn
April 1994, Trends in neurosciences,
M Raastad, and M Enríquez-Denton, and O Kiehn
July 1996, Acta physiologica Scandinavica,
Copied contents to your clipboard!