Modulating the redox potential and acid stability of rusticyanin by site-directed mutagenesis of Ser86. 1998

J F Hall, and L D Kanbi, and I Harvey, and L M Murphy, and S S Hasnain
School of Applied Sciences, De Montfort University, Leicester, U.K.

The expression of rusticyanin in Escherichia coli and a number of mutants for Ser86 is reported. Mutations of Ser86 to Asn, Asp, Gln, and Leu were undertaken as this is an Asn residue in other structurally characterized cupredoxins, and it has been suggested that this may be partly responsible for the high redox potential (680 mV) and extreme acid stability of rusticyanin. N-Terminal sequence analysis, together with other biochemical and spectrochemical characterization, shows that the recombinant wild-type protein is indistinguishable from native rusticyanin. All four mutants retain the rhombic nature of the EPR spectra and a significant absorption maximum at approximately 450 nm, thus confirming that the overall geometry of the Cu ligands is essentially maintained. The oxidized form of all four mutants is less acid stable than the wild-type protein, although the detailed mechanism of lability varies. Ser86Leu readily loses copper as the pH is reduced from 4.0, but the protein does not denature. A significant proportion (approximately 30%) of Ser86Gln is denatured at lower pH values, whereas Ser86Asn and Ser86Asp are stable as the reduced (CuI) protein. The redox potential also varies by approximately 110 mV (590-702 mV) upon these single point mutations, thus providing direct experimental support to the idea that this residue is at least in part responsible for the acid stability and the highest redox potential of rusticyanin in the cupredoxin family.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D006851 Hydrochloric Acid A strong corrosive acid that is commonly used as a laboratory reagent. It is formed by dissolving hydrogen chloride in water. GASTRIC ACID is the hydrochloric acid component of GASTRIC JUICE. Hydrogen Chloride,Muriatic Acid,Acid, Hydrochloric,Acid, Muriatic,Chloride, Hydrogen
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001400 Azurin A bacterial protein from Pseudomonas, Bordetella, or Alcaligenes which operates as an electron transfer unit associated with the cytochrome chain. The protein has a molecular weight of approximately 16,000, contains a single copper atom, is intensively blue, and has a fluorescence emission band centered at 308nm.
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial

Related Publications

J F Hall, and L D Kanbi, and I Harvey, and L M Murphy, and S S Hasnain
October 2007, Biochimica et biophysica acta,
J F Hall, and L D Kanbi, and I Harvey, and L M Murphy, and S S Hasnain
January 2000, Sheng wu hua xue yu sheng wu wu li xue bao Acta biochimica et biophysica Sinica,
J F Hall, and L D Kanbi, and I Harvey, and L M Murphy, and S S Hasnain
November 2010, Wei sheng wu xue bao = Acta microbiologica Sinica,
J F Hall, and L D Kanbi, and I Harvey, and L M Murphy, and S S Hasnain
September 2019, Journal of biotechnology,
J F Hall, and L D Kanbi, and I Harvey, and L M Murphy, and S S Hasnain
September 2016, Sheng wu gong cheng xue bao = Chinese journal of biotechnology,
J F Hall, and L D Kanbi, and I Harvey, and L M Murphy, and S S Hasnain
September 2016, Sheng wu gong cheng xue bao = Chinese journal of biotechnology,
J F Hall, and L D Kanbi, and I Harvey, and L M Murphy, and S S Hasnain
June 1991, Protein engineering,
J F Hall, and L D Kanbi, and I Harvey, and L M Murphy, and S S Hasnain
January 1995, Methods in molecular biology (Clifton, N.J.),
J F Hall, and L D Kanbi, and I Harvey, and L M Murphy, and S S Hasnain
April 1996, The Journal of biological chemistry,
J F Hall, and L D Kanbi, and I Harvey, and L M Murphy, and S S Hasnain
November 1996, Journal of molecular biology,
Copied contents to your clipboard!