Rapid activation and partial inactivation of inositol trisphosphate receptors by inositol trisphosphate. 1998

J S Marchant, and C W Taylor
Department of Pharmacology, University of Cambridge, UK.

During superfusion of permeabilized hepatocytes, submaximal concentrations of inositol 1,4,5-trisphosphate (InsP3) evoked quantal Ca2+ mobilization: a rapid acceleration in the rate of 45Ca2+ release abruptly followed by a biphasic decline to the basal rate before the InsP3-sensitive stores had fully emptied. During the fast component of the decay, the Ca2+ permeability of the stores fell rapidly by 40% (t1/2 = 250 ms) to a state indistinguishable from that evoked by preincubation with InsP3 under conditions that prevented Ca2+ mobilization. This change was accompanied by a decrease in the InsP3 dissociation rate: the response declined more quickly when InsP3 was removed during the initial stages of a response than later. We suggest that InsP3 directly causes its receptor to rapidly switch (t1/2 = 250 ms) between a low-affinity (Kd approximately 1 microM) active, and a higher-affinity (Kd approximately 100 nM) less active, conformation, and that this transition underlies the fast component of the decaying phase of Ca2+ release. Ca2+ continues to leak through the unchanging less active state of the receptor until those stores that responded initially are completely empty, accounting for the slow phase of the response. The requirements for activation of InsP3 receptors are more stringent (InsP3 and then Ca2+ binding) than those for partial inactivation (InsP3 binding); rapid inactivation is therefore likely to determine whether the cytosolic [Ca2+] reaches the threshold for regenerative Ca2+ signals.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002132 Calcium Radioisotopes Unstable isotopes of calcium that decay or disintegrate emitting radiation. Ca atoms with atomic weights 39, 41, 45, 47, 49, and 50 are radioactive calcium isotopes. Radioisotopes, Calcium
D002413 Cations, Divalent Positively charged atoms, radicals or groups of atoms with a valence of plus 2, which travel to the cathode or negative pole during electrolysis. Divalent Cations
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane

Related Publications

J S Marchant, and C W Taylor
December 2000, The Biochemical journal,
J S Marchant, and C W Taylor
May 1995, The Journal of membrane biology,
J S Marchant, and C W Taylor
December 1999, Cell calcium,
J S Marchant, and C W Taylor
March 2003, Pflugers Archiv : European journal of physiology,
J S Marchant, and C W Taylor
May 1999, The Journal of biological chemistry,
J S Marchant, and C W Taylor
January 2005, Cell calcium,
J S Marchant, and C W Taylor
June 2017, Biochimica et biophysica acta. Molecular cell research,
J S Marchant, and C W Taylor
January 1992, Clinical neuropharmacology,
J S Marchant, and C W Taylor
January 2012, Advances in experimental medicine and biology,
Copied contents to your clipboard!