NMR solution structure of a cytoplasmic surface loop of the human red cell anion transporter, band 3. 1998

D Askin, and G B Bloomberg, and E J Chambers, and M J Tanner
Department of Biochemistry, School of Medical Sciences, Bristol University, UK.

The membrane domain of the human red cell anion transport protein, band 3, is too large to be studied by solution nuclear magnetic resonance spectroscopy (NMR), and its amphiphilic nature requires the use of detergents for solubilization. An alternative approach is to divide the protein into smaller (trans-membrane or surface loop) domains for NMR study. We report the structure of a 46-residue synthetic peptide that corresponds to the cytoplasmic surface loop connecting the putative 12th and 13th trans-membrane spans (residues 796-841) in the 14 span model of band 3. This peptide was shown by circular dichroism (CD) to be 38% helical in 30% trifluoroacetic acid. Two regions of helix (one close to the N-terminus of the peptide and one close to the C-terminus of the peptide) were identified by NMR. Long-range nuclear Overhauser effect (NOE) cross-peaks showed the two helices to be in near proximity. The helices were separated by a proline-rich loop that exhibited local order but was mobile with respect to the rest of the peptide. We discuss how the NMR structure of this loop fits the current models of band 3 structure and topology and the results of recent mutagenesis experiments. A cyclic version of this peptide was synthesized and studied by CD, but NMR studies were not possible due to the low solubility of this peptide.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010456 Peptides, Cyclic Peptides whose amino acid residues are linked together forming a circular chain. Some of them are ANTI-INFECTIVE AGENTS; some are biosynthesized non-ribosomally (PEPTIDE BIOSYNTHESIS, NON-RIBOSOMAL). Circular Peptide,Cyclic Peptide,Cyclic Peptides,Cyclopeptide,Orbitide,Circular Peptides,Cyclopeptides,Orbitides,Peptide, Circular,Peptide, Cyclic,Peptides, Circular
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001457 Anion Exchange Protein 1, Erythrocyte A major integral transmembrane protein of the ERYTHROCYTE MEMBRANE. It is the anion exchanger responsible for electroneutral transporting in CHLORIDE IONS in exchange of BICARBONATE IONS allowing CO2 uptake and transport from tissues to lungs by the red blood cells. Genetic mutations that result in a loss of the protein function have been associated with type 4 HEREDITARY SPHEROCYTOSIS. Anion Transport Protein, Erythrocyte,Band 3 Protein,Erythrocyte Anion Transport Protein,Erythrocyte Membrane Band 3 Protein,AE1 Anion Exchanger,AE1 Chloride-Bicarbonate Exchanger,AE1 Cl- HCO3- Exchanger,AE1 Gene Product,Anion Exchanger 1,Antigens, CD233,Band 3 Anion Transport Protein,Band III Protein,CD233 Antigen,CD233 Antigens,Capnophorin,EPB3 Protein,Erythrocyte Anion Exchanger,Erythrocyte Membrane Anion Transport Protein,Erythrocyte Membrane Protein Band 3, Diego Blood Group,Protein Band 3,SLC4A1 Protein,Solute Carrier Family 4 Member 1,Solute Carrier Family 4, Anion Exchanger, Member 1,AE1 Chloride Bicarbonate Exchanger,AE1 Cl HCO3 Exchanger,Anion Exchanger, Erythrocyte,Antigen, CD233,Chloride-Bicarbonate Exchanger, AE1,Exchanger 1, Anion,Protein, EPB3
D012996 Solutions The homogeneous mixtures formed by the mixing of a solid, liquid, or gaseous substance (solute) with a liquid (the solvent), from which the dissolved substances can be recovered by physical processes. (From Grant & Hackh's Chemical Dictionary, 5th ed) Solution
D017433 Protein Structure, Secondary The level of protein structure in which regular hydrogen-bond interactions within contiguous stretches of polypeptide chain give rise to ALPHA-HELICES; BETA-STRANDS (which align to form BETA-SHEETS), or other types of coils. This is the first folding level of protein conformation. Secondary Protein Structure,Protein Structures, Secondary,Secondary Protein Structures,Structure, Secondary Protein,Structures, Secondary Protein

Related Publications

D Askin, and G B Bloomberg, and E J Chambers, and M J Tanner
September 1996, Biophysical journal,
D Askin, and G B Bloomberg, and E J Chambers, and M J Tanner
September 1994, Blood,
D Askin, and G B Bloomberg, and E J Chambers, and M J Tanner
May 1994, The Journal of membrane biology,
D Askin, and G B Bloomberg, and E J Chambers, and M J Tanner
August 2003, The Journal of biological chemistry,
D Askin, and G B Bloomberg, and E J Chambers, and M J Tanner
October 1996, Proceedings of the National Academy of Sciences of the United States of America,
D Askin, and G B Bloomberg, and E J Chambers, and M J Tanner
September 1993, FEBS letters,
D Askin, and G B Bloomberg, and E J Chambers, and M J Tanner
April 1997, The Journal of biological chemistry,
D Askin, and G B Bloomberg, and E J Chambers, and M J Tanner
October 1985, The Journal of biological chemistry,
D Askin, and G B Bloomberg, and E J Chambers, and M J Tanner
December 1999, Biochemical Society transactions,
Copied contents to your clipboard!