Induction of type 2 deiodinase activity by cyclic guanosine 3',5'-monophosphate in cultured rat glial cells. 1998

A Gondou, and N Toyoda, and M Nishikawa, and S Tabata, and T Yonemoto, and Y Ogawa, and T Tokoro, and N Sakaguchi, and F Wang, and M Inada
Second Department of Internal Medicine, Kansai Medical University, Moriguchi City, Osaka, Japan.

We investigated the effects of cyclic guanosine 3',5'-monophosphate (cGMP) on type 2 iodothyronine deiodinase (D2) in cultured rat glial cells. Rat glial cells were cultured in Dulbecco's modified Eagle's medium supplemented with 15% fetal bovine serum. When cells were cultured in the presence of 8-bromo cGMP (8-Br cGMP), an analogue of cGMP, D2 activity was increased in a time- and concentration-dependent manner. Lineweaver-Burk plots revealed that the stimulation of D2 activity by 8-Br cGMP (10(-3) M) was associated with fivefold increase in maximum velocity but without a significant change in Michaelis-Menten constant, suggesting that cGMP increases D2 activity via new enzyme synthesis. Both atrial natriuretic peptide (ANP) and C-type natriuretic peptide (CNP) are well known to increase the intracellular cGMP level via their guanylate cyclase-linked receptors in rat glial cells. In the present study, ANP (10(-6) M) and CNP (10(-6) M) significantly increased the D2 activity in rat glial cells (1.9-fold [ANP] or 2.3-fold [CNP] compared with control activity, respectively). Northern blot analysis demonstrated that D2 mRNA level increased in the presence of 8-Br cGMP (10(-3) M), and reached a plateau (six-fold) after 4 hours of incubation. The increment of D2 mRNA level by 8-Br cGMP was comparable with the increase of the D2 activity by this agent. Our data suggest that cGMP induces rat D2 activity, at least in part, at the pretranslational level, and that ANP and CNP increase D2 activity most likely via their guanylate cyclase-linked receptors in rat glial cells.

UI MeSH Term Description Entries
D007453 Iodide Peroxidase A hemeprotein that catalyzes the oxidation of the iodide radical to iodine with the subsequent iodination of many organic compounds, particularly proteins. EC 1.11.1.8. Iodinase,Iodothyronine 5'-Deiodinase,Iodothyronine Deiodinase,Iodotyrosine Deiodase,Thyroid Peroxidase,Thyroxine 5'-Deiodinase,Thyroxine 5'-Monodeiodinase,5'-Deiodinase,Deiodinase,Iodotyrosine Deiodinase,Monodeiodinase,Reverse Triiodothyronine 5'-Deiodinase,T4-5'-Deiodinase,T4-Monodeiodinase,Tetraiodothyronine 5'-Deiodinase,Thyroxine Converting Enzyme,Triiodothyronine Deiodinase,5' Deiodinase,5'-Deiodinase, Iodothyronine,5'-Deiodinase, Reverse Triiodothyronine,5'-Deiodinase, Tetraiodothyronine,5'-Deiodinase, Thyroxine,5'-Monodeiodinase, Thyroxine,Deiodase, Iodotyrosine,Deiodinase, Iodothyronine,Deiodinase, Iodotyrosine,Deiodinase, Triiodothyronine,Enzyme, Thyroxine Converting,Iodothyronine 5' Deiodinase,Peroxidase, Iodide,Peroxidase, Thyroid,Reverse Triiodothyronine 5' Deiodinase,T4 5' Deiodinase,T4 Monodeiodinase,Tetraiodothyronine 5' Deiodinase,Thyroxine 5' Deiodinase,Thyroxine 5' Monodeiodinase,Triiodothyronine 5'-Deiodinase, Reverse
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009320 Atrial Natriuretic Factor A potent natriuretic and vasodilatory peptide or mixture of different-sized low molecular weight PEPTIDES derived from a common precursor and secreted mainly by the HEART ATRIUM. All these peptides share a sequence of about 20 AMINO ACIDS. ANF,ANP,Atrial Natriuretic Peptide,Atrial Natriuretic Peptides,Atriopeptins,Auriculin,Natriuretic Peptides, Atrial,ANF (1-126),ANF (1-28),ANF (99-126),ANF Precursors,ANP (1-126),ANP (1-28),ANP Prohormone (99-126),ANP-(99-126),Atrial Natriuretic Factor (1-126),Atrial Natriuretic Factor (1-28),Atrial Natriuretic Factor (99-126),Atrial Natriuretic Factor Precursors,Atrial Natriuretic Factor Prohormone,Atrial Natriuretic Peptide (1-126),Atrial Pronatriodilatin,Atriopeptigen,Atriopeptin (1-28),Atriopeptin (99-126),Atriopeptin 126,Atriopeptin Prohormone (1-126),Cardiodilatin (99-126),Cardiodilatin Precursor,Cardionatrin I,Cardionatrin IV,Prepro-ANP,Prepro-CDD-ANF,Prepro-Cardiodilatin-Atrial Natriuretic Factor,Pro-ANF,ProANF,Proatrial Natriuretic Factor,Pronatriodilatin,alpha ANP,alpha-ANP Dimer,alpha-Atrial Natriuretic Peptide,beta-ANP,beta-Atrial Natriuretic Peptide,gamma ANP (99-126),gamma-Atrial Natriuretic Peptide,Natriuretic Peptide, Atrial,Peptide, Atrial Natriuretic,Peptides, Atrial Natriuretic,Prepro ANP,Prepro CDD ANF,Prepro Cardiodilatin Atrial Natriuretic Factor,Pro ANF,alpha ANP Dimer,alpha Atrial Natriuretic Peptide,beta ANP,beta Atrial Natriuretic Peptide,gamma Atrial Natriuretic Peptide
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D006152 Cyclic GMP Guanosine cyclic 3',5'-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3'- and 5'-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed) Guanosine Cyclic 3',5'-Monophosphate,Guanosine Cyclic 3,5 Monophosphate,Guanosine Cyclic Monophosphate,Guanosine Cyclic-3',5'-Monophosphate,3',5'-Monophosphate, Guanosine Cyclic,Cyclic 3',5'-Monophosphate, Guanosine,Cyclic Monophosphate, Guanosine,Cyclic-3',5'-Monophosphate, Guanosine,GMP, Cyclic,Guanosine Cyclic 3',5' Monophosphate,Monophosphate, Guanosine Cyclic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

A Gondou, and N Toyoda, and M Nishikawa, and S Tabata, and T Yonemoto, and Y Ogawa, and T Tokoro, and N Sakaguchi, and F Wang, and M Inada
September 1988, Endocrinology,
A Gondou, and N Toyoda, and M Nishikawa, and S Tabata, and T Yonemoto, and Y Ogawa, and T Tokoro, and N Sakaguchi, and F Wang, and M Inada
October 1974, Biomedicine / [publiee pour l'A.A.I.C.I.G.],
A Gondou, and N Toyoda, and M Nishikawa, and S Tabata, and T Yonemoto, and Y Ogawa, and T Tokoro, and N Sakaguchi, and F Wang, and M Inada
May 1990, Metabolism: clinical and experimental,
A Gondou, and N Toyoda, and M Nishikawa, and S Tabata, and T Yonemoto, and Y Ogawa, and T Tokoro, and N Sakaguchi, and F Wang, and M Inada
July 1975, Experimental cell research,
A Gondou, and N Toyoda, and M Nishikawa, and S Tabata, and T Yonemoto, and Y Ogawa, and T Tokoro, and N Sakaguchi, and F Wang, and M Inada
April 1986, Endocrinologia japonica,
A Gondou, and N Toyoda, and M Nishikawa, and S Tabata, and T Yonemoto, and Y Ogawa, and T Tokoro, and N Sakaguchi, and F Wang, and M Inada
June 1978, Biochemical and biophysical research communications,
A Gondou, and N Toyoda, and M Nishikawa, and S Tabata, and T Yonemoto, and Y Ogawa, and T Tokoro, and N Sakaguchi, and F Wang, and M Inada
January 1971, Methods of biochemical analysis,
A Gondou, and N Toyoda, and M Nishikawa, and S Tabata, and T Yonemoto, and Y Ogawa, and T Tokoro, and N Sakaguchi, and F Wang, and M Inada
August 1976, Proceedings of the National Academy of Sciences of the United States of America,
A Gondou, and N Toyoda, and M Nishikawa, and S Tabata, and T Yonemoto, and Y Ogawa, and T Tokoro, and N Sakaguchi, and F Wang, and M Inada
May 1980, The Journal of laboratory and clinical medicine,
A Gondou, and N Toyoda, and M Nishikawa, and S Tabata, and T Yonemoto, and Y Ogawa, and T Tokoro, and N Sakaguchi, and F Wang, and M Inada
November 1978, Biochemical and biophysical research communications,
Copied contents to your clipboard!