Treatment with interferon-alpha preferentially reduces the capacity for amplification of granulocyte-macrophage progenitors (CFU-GM) from patients with chronic myeloid leukemia but spares normal CFU-GM. 1998

M Y Gordon, and S B Marley, and J L Lewis, and R J Davidson, and D X Nguyen, and F H Grand, and T A Amos, and J M Goldman
Department of Haematology, Imperial College School of Medicine, Hammersmith Hospital, London W12 ONN, United Kingdom. mgordon@rpms.ac.uk

The biological target for interferon (IFN)-alpha in chronic myeloid leukemia (CML) is unknown, but one possibility is that amplification of granulocyte-macrophage colony-forming cells (CFU-GM) is reduced. Replating CFU-GM colonies and observing secondary colony formation provides a measure of CFU-GM amplification. Amplification of CML, but not normal, CFU-GM in vitro was significantly inhibited by IFN-alpha (P = 0.02). In 5 out of 15 CML cases studied by fluorescence in situ hybridization, in vitro treatment with IFN-alpha increased the proportion of CFU-GM, which lacked BCR-ABL. The ability of patients' CFU-GM to amplify, and suppression of this ability by IFN-alpha, predicted responsiveness to IFN-alpha therapy in 86% of cases. Investigation of patients on treatment with IFN-alpha showed a threefold reduction in CFU-GM amplification in responders (P = 0.03) but no significant change in nonresponders (P = 0.8). We conclude that IFN-alpha preferentially suppresses amplification of CML CFU-GM to varying degrees. The differing in vitro sensitivities to IFN-alpha and growth kinetics of individual patients' cells could help differentiate those who will or will not benefit from treatment with IFN-alpha.

UI MeSH Term Description Entries
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D006098 Granulocytes Leukocytes with abundant granules in the cytoplasm. They are divided into three groups according to the staining properties of the granules: neutrophilic, eosinophilic, and basophilic. Mature granulocytes are the NEUTROPHILS; EOSINOPHILS; and BASOPHILS. Granulocyte
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D015464 Leukemia, Myelogenous, Chronic, BCR-ABL Positive Clonal hematopoetic disorder caused by an acquired genetic defect in PLURIPOTENT STEM CELLS. It starts in MYELOID CELLS of the bone marrow, invades the blood and then other organs. The condition progresses from a stable, more indolent, chronic phase (LEUKEMIA, MYELOID, CHRONIC PHASE) lasting up to 7 years, to an advanced phase composed of an accelerated phase (LEUKEMIA, MYELOID, ACCELERATED PHASE) and BLAST CRISIS. Granulocytic Leukemia, Chronic,Leukemia, Granulocytic, Chronic,Leukemia, Myelocytic, Chronic,Leukemia, Myelogenous, Chronic,Leukemia, Myeloid, Chronic,Myelocytic Leukemia, Chronic,Myelogenous Leukemia, Chronic,Myeloid Leukemia, Chronic,Leukemia, Chronic Myelogenous,Leukemia, Chronic Myeloid,Leukemia, Myelogenous, Ph1 Positive,Leukemia, Myelogenous, Ph1-Positive,Leukemia, Myeloid, Ph1 Positive,Leukemia, Myeloid, Ph1-Positive,Leukemia, Myeloid, Philadelphia Positive,Leukemia, Myeloid, Philadelphia-Positive,Myelogenous Leukemia, Ph1-Positive,Myeloid Leukemia, Ph1-Positive,Myeloid Leukemia, Philadelphia-Positive,Chronic Granulocytic Leukemia,Chronic Granulocytic Leukemias,Chronic Myelocytic Leukemia,Chronic Myelocytic Leukemias,Chronic Myelogenous Leukemia,Chronic Myelogenous Leukemias,Chronic Myeloid Leukemia,Chronic Myeloid Leukemias,Granulocytic Leukemias, Chronic,Leukemia, Chronic Granulocytic,Leukemia, Chronic Myelocytic,Leukemia, Ph1-Positive Myelogenous,Leukemia, Ph1-Positive Myeloid,Leukemia, Philadelphia-Positive Myeloid,Leukemias, Chronic Granulocytic,Leukemias, Chronic Myelocytic,Leukemias, Chronic Myelogenous,Leukemias, Chronic Myeloid,Leukemias, Ph1-Positive Myelogenous,Leukemias, Ph1-Positive Myeloid,Leukemias, Philadelphia-Positive Myeloid,Myelocytic Leukemias, Chronic,Myelogenous Leukemia, Ph1 Positive,Myelogenous Leukemias, Chronic,Myelogenous Leukemias, Ph1-Positive,Myeloid Leukemia, Ph1 Positive,Myeloid Leukemia, Philadelphia Positive,Myeloid Leukemias, Chronic,Myeloid Leukemias, Ph1-Positive,Myeloid Leukemias, Philadelphia-Positive,Ph1-Positive Myelogenous Leukemia,Ph1-Positive Myelogenous Leukemias,Ph1-Positive Myeloid Leukemia,Ph1-Positive Myeloid Leukemias,Philadelphia-Positive Myeloid Leukemia,Philadelphia-Positive Myeloid Leukemias
D016896 Treatment Outcome Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series. Rehabilitation Outcome,Treatment Effectiveness,Clinical Effectiveness,Clinical Efficacy,Patient-Relevant Outcome,Treatment Efficacy,Effectiveness, Clinical,Effectiveness, Treatment,Efficacy, Clinical,Efficacy, Treatment,Outcome, Patient-Relevant,Outcome, Rehabilitation,Outcome, Treatment,Outcomes, Patient-Relevant,Patient Relevant Outcome,Patient-Relevant Outcomes
D016898 Interferon-alpha One of the type I interferons produced by peripheral blood leukocytes or lymphoblastoid cells. In addition to antiviral activity, it activates NATURAL KILLER CELLS and B-LYMPHOCYTES, and down-regulates VASCULAR ENDOTHELIAL GROWTH FACTOR expression through PI-3 KINASE and MAPK KINASES signaling pathways. Interferon Alfa,Interferon, Leukocyte,Interferon, Lymphoblast,alpha-Interferon,IFN-alpha D,IFN-alpha5,Interferon alpha-1,Interferon alpha-17,Interferon alpha-4,Interferon alpha-5,Interferon alpha-7,Interferon alpha-88,Interferon alpha-J,Interferon alpha-T,Interferon alpha4,Interferon alpha5,Interferon, Lymphoblastoid,Interferon, alpha,LeIF I,LeIF J,Leif D,IFN alpha D,IFN alpha5,Interferon alpha,Interferon alpha 1,Interferon alpha 17,Interferon alpha 4,Interferon alpha 5,Interferon alpha 7,Interferon alpha 88,Interferon alpha J,Interferon alpha T,Leukocyte Interferon,Lymphoblast Interferon,Lymphoblastoid Interferon,alpha Interferon

Related Publications

M Y Gordon, and S B Marley, and J L Lewis, and R J Davidson, and D X Nguyen, and F H Grand, and T A Amos, and J M Goldman
April 1987, Japanese journal of pharmacology,
M Y Gordon, and S B Marley, and J L Lewis, and R J Davidson, and D X Nguyen, and F H Grand, and T A Amos, and J M Goldman
March 1988, Blut,
M Y Gordon, and S B Marley, and J L Lewis, and R J Davidson, and D X Nguyen, and F H Grand, and T A Amos, and J M Goldman
May 1988, Bollettino della Societa italiana di biologia sperimentale,
M Y Gordon, and S B Marley, and J L Lewis, and R J Davidson, and D X Nguyen, and F H Grand, and T A Amos, and J M Goldman
May 1989, Pharmacology & toxicology,
M Y Gordon, and S B Marley, and J L Lewis, and R J Davidson, and D X Nguyen, and F H Grand, and T A Amos, and J M Goldman
January 1988, Folia haematologica (Leipzig, Germany : 1928),
M Y Gordon, and S B Marley, and J L Lewis, and R J Davidson, and D X Nguyen, and F H Grand, and T A Amos, and J M Goldman
January 2006, Pharmacopsychiatry,
M Y Gordon, and S B Marley, and J L Lewis, and R J Davidson, and D X Nguyen, and F H Grand, and T A Amos, and J M Goldman
January 1997, Vnitrni lekarstvi,
M Y Gordon, and S B Marley, and J L Lewis, and R J Davidson, and D X Nguyen, and F H Grand, and T A Amos, and J M Goldman
January 2001, The hematology journal : the official journal of the European Haematology Association,
M Y Gordon, and S B Marley, and J L Lewis, and R J Davidson, and D X Nguyen, and F H Grand, and T A Amos, and J M Goldman
November 2000, Orvosi hetilap,
M Y Gordon, and S B Marley, and J L Lewis, and R J Davidson, and D X Nguyen, and F H Grand, and T A Amos, and J M Goldman
March 2011, Current drug targets,
Copied contents to your clipboard!