A stochastic model of brain cell differentiation in tissue culture. 1998

A Y Yakovlev, and M Mayer-Proschel, and M Noble
Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City 84108, USA.

The timing of cell differentiation can be controlled both by cellintrinsic mechanisms and by cell-extrinsic signals. Oligodendrocyte type-2 astrocyte progenitor cells are known to be the precursor cells that give rise to oligodendrocytes. When stimulated to divide by purified cortical astrocytes or by platelet-derived growth factor, these progenitor cells generate oligodendrocytes in vitro with a timing like that observed in vivo. The most widely accepted model of this process assumes a cell-intrinsic biological clock that resides in the progenitor cell. The intrinsic clock model originally proposed in 1986 remains as the dominant theoretical concept for the analysis of timed differentiation in this cell lineage. However, the results of a recent experimental study (Ibarrola et al., Developmental Biology, vol. 180, 1-21, 1996) are most consistent with the hypothesis that the propensity of a clone of dividing O-2A progenitor cells initially to generate at least one oligodendrocyte may be regulated by cell-intrinsic mechanisms, but that environmental signals regulate the extent of further oligodendrocyte generation. We propose a stochastic model of cell differentiation in culture to accommodate the most recent experimental findings. Our model is an age-dependent branching stochastic process with two types of cells. The model makes it possible to derive analytical expressions for the expected number of progenitor cells and of oligodendrocytes as functions of time. The model parameters were estimated by fitting these functions through data on the average (sample mean) number of both types of cells per colony at different time intervals from start of experiment. Using this method we provide a biologically meaningful interpretation of the observed pattern of oligodendrocyte generation in vitro and its modification in the presence of thyroid hormone.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009836 Oligodendroglia A class of large neuroglial (macroglial) cells in the central nervous system. Oligodendroglia may be called interfascicular, perivascular, or perineuronal (not the same as SATELLITE CELLS, PERINEURONAL of GANGLIA) according to their location. They form the insulating MYELIN SHEATH of axons in the central nervous system. Interfascicular Oligodendroglia,Oligodendrocytes,Perineuronal Oligodendroglia,Perineuronal Satellite Oligodendroglia Cells,Perivascular Oligodendroglia,Satellite Cells, Perineuronal, Oligodendroglia,Perineuronal Satellite Oligodendrocytes,Interfascicular Oligodendroglias,Oligodendrocyte,Oligodendrocyte, Perineuronal Satellite,Oligodendrocytes, Perineuronal Satellite,Oligodendroglia, Interfascicular,Oligodendroglia, Perineuronal,Oligodendroglia, Perivascular,Perineuronal Satellite Oligodendrocyte,Satellite Oligodendrocyte, Perineuronal,Satellite Oligodendrocytes, Perineuronal
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013234 Stem Cells Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells. Colony-Forming Units,Mother Cells,Progenitor Cells,Colony-Forming Unit,Cell, Mother,Cell, Progenitor,Cell, Stem,Cells, Mother,Cells, Progenitor,Cells, Stem,Colony Forming Unit,Colony Forming Units,Mother Cell,Progenitor Cell,Stem Cell
D013269 Stochastic Processes Processes that incorporate some element of randomness, used particularly to refer to a time series of random variables. Process, Stochastic,Stochastic Process,Processes, Stochastic

Related Publications

A Y Yakovlev, and M Mayer-Proschel, and M Noble
July 2014, Bulletin of mathematical biology,
A Y Yakovlev, and M Mayer-Proschel, and M Noble
December 1985, Journal of cellular physiology,
A Y Yakovlev, and M Mayer-Proschel, and M Noble
April 2006, Journal of theoretical biology,
A Y Yakovlev, and M Mayer-Proschel, and M Noble
April 1985, Journal of cellular physiology,
A Y Yakovlev, and M Mayer-Proschel, and M Noble
January 1976, Advances in experimental medicine and biology,
A Y Yakovlev, and M Mayer-Proschel, and M Noble
August 1971, Proceedings of the National Academy of Sciences of the United States of America,
A Y Yakovlev, and M Mayer-Proschel, and M Noble
December 2018, Proceedings of the ... IEEE Conference on Decision & Control. IEEE Conference on Decision & Control,
A Y Yakovlev, and M Mayer-Proschel, and M Noble
January 1991, Annals of the New York Academy of Sciences,
A Y Yakovlev, and M Mayer-Proschel, and M Noble
December 2003, Biophysical journal,
A Y Yakovlev, and M Mayer-Proschel, and M Noble
January 1981, Vision research,
Copied contents to your clipboard!