Anterior/posterior influences on neural crest-derived pigment cell differentiation. 1998

G Thibaudeau, and S Holder, and P Gerard
Department of Biological Sciences, Mississippi State University, Mississippi State. giselle@ra.msstate.edu

The neural crest of vertebrate embryos has been used to elucidate steps involved in early embryonic cellular processes such as differentiation and migration. Neural crest cells form a ridge along the dorsal midline and subsequently they migrate throughout the embryo and differentiate into a wide variety of cell types. Intrinsic factors and environmental cues distributed along the neural tube, along the migratory pathways, and/or at the location of arrest influence the fate of neural crest cells. Although premigratory cells of the cranial and trunk neural crest exhibit differences in their differentiation potentials, premigratory trunk neural crest cells are generally assumed to have equivalent developmental potentials. Axolotl neural crest cells from different regions of origin, different stages of development, and challenged with different culture media have been analyzed for differentiation preferences pertaining to the pigment cell lineages. We report region-dependent differentiation of chromatophores from trunk neural crest at two developmental stages. Also, dosage with guanosine produces region-specific influences on the production of xanthophores from wild-type embryos. Our results support the hypothesis that spatial and temporal differences among premigratory trunk neural crest cells found along the anteroposterior axis influence developmental potentials and diminish the equivalency of axolotl neural crest cells.

UI MeSH Term Description Entries
D008547 Melanophores Chromatophores (large pigment cells of fish, amphibia, reptiles and many invertebrates) which contain melanin. Short term color changes are brought about by an active redistribution of the melanophores pigment containing organelles (MELANOSOMES). Mammals do not have melanophores; however they have retained smaller pigment cells known as MELANOCYTES. Melanophore
D009432 Neural Crest The two longitudinal ridges along the PRIMITIVE STREAK appearing near the end of GASTRULATION during development of nervous system (NEURULATION). The ridges are formed by folding of NEURAL PLATE. Between the ridges is a neural groove which deepens as the fold become elevated. When the folds meet at midline, the groove becomes a closed tube, the NEURAL TUBE. Neural Crest Cells,Neural Fold,Neural Groove,Cell, Neural Crest,Cells, Neural Crest,Crest, Neural,Crests, Neural,Fold, Neural,Folds, Neural,Groove, Neural,Grooves, Neural,Neural Crest Cell,Neural Crests,Neural Folds,Neural Grooves
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D002856 Chromatophores The large pigment cells of fish, amphibia, reptiles and many invertebrates which actively disperse and aggregate their pigment granules. These cells include MELANOPHORES, erythrophores, xanthophores, leucophores and iridiophores. (In algae, chromatophores refer to CHLOROPLASTS. In phototrophic bacteria chromatophores refer to membranous organelles (BACTERIAL CHROMATOPHORES).) Chromatophore
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic
D006151 Guanosine A purine nucleoside that has guanine linked by its N9 nitrogen to the C1 carbon of ribose. It is a component of ribonucleic acid and its nucleotides play important roles in metabolism. (From Dorland, 28th ed)
D000557 Ambystoma A genus of the Ambystomatidae family. The best known species are the axolotl AMBYSTOMA MEXICANUM and the closely related tiger salamander Ambystoma tigrinum. They may retain gills and remain aquatic without developing all of the adult characteristics. However, under proper changes in the environment they metamorphose. Amblystoma,Ambystoma tigrinum,Tiger Salamander,Amblystomas,Ambystomas,Salamander, Tiger,Salamanders, Tiger,Tiger Salamanders
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

G Thibaudeau, and S Holder, and P Gerard
February 1993, Journal of neurobiology,
G Thibaudeau, and S Holder, and P Gerard
January 2019, Journal of tissue engineering and regenerative medicine,
G Thibaudeau, and S Holder, and P Gerard
January 1971, UCLA forum in medical sciences,
G Thibaudeau, and S Holder, and P Gerard
December 1993, Current opinion in cell biology,
G Thibaudeau, and S Holder, and P Gerard
January 1984, Anatomy and embryology,
G Thibaudeau, and S Holder, and P Gerard
September 1999, Development (Cambridge, England),
G Thibaudeau, and S Holder, and P Gerard
December 2021, International journal of molecular sciences,
G Thibaudeau, and S Holder, and P Gerard
December 1991, The International journal of developmental biology,
G Thibaudeau, and S Holder, and P Gerard
January 2015, In vivo (Athens, Greece),
Copied contents to your clipboard!