The present and future role of intraoperative MRI in neurosurgical procedures. 1997

E Alexander, and T M Moriarty, and R Kikinis, and P Black, and F M Jolesz
Department of Surgery (Neurosurgery), Brigham & Women's Hospital, Dana-Farber Cancer Institute, Boston, Mass., USA.

OBJECTIVE We have worked in conjunction with scientists from the General Electric Corporation over 6 years to develop an open-bore MR imaging system (0.5 T) enabling optimal vertical access of surgeon and assistant to the patient, and real-time imaging during major neurosurgical procedures. METHODS The intraoperative MR system (MRT) is located in a specially modified operative suite that combines the features of an MR-imaging suite with a fully functional operating room. An MR-compatible anesthesia machine and patient-monitoring device are located next to the magnet. The position of instruments, platforms and supports may be mapped in the operative field using 3 charge-coupled device video cameras mounted in the overhead support truncheon that follow various light-emitting diodes on the devices (Pixsys). The MR image plane can be defined as the axial, coronal or sagittal views through a point along the vector beneath the Pixsys tripod. A variety of surface coils were designed to take full advantage of full open patient access. The software, implemented by a technologist located outside the MR room, is now equivalent to that available on the commercial 0.5-tesla Signa Advantage system. Development of very robust 3-dimensional software in conjunction with the Surgical Planning Laboratory (SPL) at the Brigham & Women's Hospital is the subject of significant effort. The MRT system has been shown to possess imaging capabilities comparable, or even slightly superior (by 10%), to a conventional 0.5-tesla MR scanner. Two modified liquid-crystal display screens are mounted on the magnet housing for the surgeon to monitor the images during the procedures. Projection into larger screens or the operating microscope is under development. RESULTS We have performed 110 neurosurgical cases in MRT as of January 29, 1997, including 47 biopsies, 6 catheter placements, 4 cyst drainages, 47 craniotomies for resection, 3 spinal cases (1 syrinx drainage), and 3 laser tumor ablations. CONCLUSIONS MRT is especially useful in guiding biopsies and resections near cysts, ventricles and critical vascular structures where preoperative images with framed/frameless techniques would be inadequate to show anatomic changes during the procedure. Real-time images of a biopsy needle within the abnormal area are very useful in cases of subtle pathologic change. More complete resection of infiltrative tumor is readily accomplished. SPL image fusion of SPECT and neurofunctional data (e.g. from magnetic stimulation preoperatively) into the imaging space enables the surgeon to better visualize tumor invasion or neural function in real-time imaging during resection. Imaging of thermal gradients for cryoprobe or laser ablation, and combination with endoscopy and robotics will offer additional benefit in the performance of difficult neurosurgical procedures.

UI MeSH Term Description Entries
D007430 Intraoperative Care Patient care procedures performed during the operation that are ancillary to the actual surgery. It includes monitoring, fluid therapy, medication, transfusion, anesthesia, radiography, and laboratory tests. Care, Intraoperative
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D009493 Neurosurgery A surgical specialty concerned with the treatment of diseases and disorders of the brain, spinal cord, and peripheral and sympathetic nervous system. Neurosurgeries
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D003399 Craniotomy Surgical incision into the cranium. Craniectomy,Craniectomies,Craniotomies
D003952 Diagnostic Imaging Any visual display of structural or functional patterns of organs or tissues for diagnostic evaluation. It includes measuring physiologic and metabolic responses to physical and chemical stimuli, as well as ultramicroscopy. Imaging, Diagnostic,Imaging, Medical,Medical Imaging
D004867 Equipment Design Methods and patterns of fabricating machines and related hardware. Design, Equipment,Device Design,Medical Device Design,Design, Medical Device,Designs, Medical Device,Device Design, Medical,Device Designs, Medical,Medical Device Designs,Design, Device,Designs, Device,Designs, Equipment,Device Designs,Equipment Designs
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001706 Biopsy Removal and pathologic examination of specimens from the living body. Biopsies
D016343 Monitoring, Intraoperative The constant checking on the state or condition of a patient during the course of a surgical operation (e.g., checking of vital signs). Intraoperative Monitoring

Related Publications

E Alexander, and T M Moriarty, and R Kikinis, and P Black, and F M Jolesz
January 2018, Frontiers in oncology,
E Alexander, and T M Moriarty, and R Kikinis, and P Black, and F M Jolesz
July 2006, Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery,
E Alexander, and T M Moriarty, and R Kikinis, and P Black, and F M Jolesz
August 2015, Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia,
E Alexander, and T M Moriarty, and R Kikinis, and P Black, and F M Jolesz
May 2021, World neurosurgery,
E Alexander, and T M Moriarty, and R Kikinis, and P Black, and F M Jolesz
May 2009, Neurosurgical focus,
E Alexander, and T M Moriarty, and R Kikinis, and P Black, and F M Jolesz
January 1979, Heart & lung : the journal of critical care,
E Alexander, and T M Moriarty, and R Kikinis, and P Black, and F M Jolesz
January 2012, Critical reviews in biomedical engineering,
E Alexander, and T M Moriarty, and R Kikinis, and P Black, and F M Jolesz
August 2014, Current opinion in anaesthesiology,
E Alexander, and T M Moriarty, and R Kikinis, and P Black, and F M Jolesz
April 1989, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society,
E Alexander, and T M Moriarty, and R Kikinis, and P Black, and F M Jolesz
January 1986, Acta radiologica. Supplementum,
Copied contents to your clipboard!