| D007135 |
Immunoglobulin Variable Region |
That region of the immunoglobulin molecule that varies in its amino acid sequence and composition, and comprises the binding site for a specific antigen. It is located at the N-terminus of the Fab fragment of the immunoglobulin. It includes hypervariable regions (COMPLEMENTARITY DETERMINING REGIONS) and framework regions. |
Variable Region, Ig,Variable Region, Immunoglobulin,Framework Region, Immunoglobulin,Fv Antibody Fragments,Fv Fragments,Ig Framework Region,Ig Variable Region,Immunoglobulin Framework Region,Immunoglobulin Fv Fragments,Immunoglobulin V,Antibody Fragment, Fv,Antibody Fragments, Fv,Fragment, Fv,Fragment, Fv Antibody,Fragment, Immunoglobulin Fv,Fragments, Fv,Fragments, Fv Antibody,Fragments, Immunoglobulin Fv,Framework Region, Ig,Framework Regions, Ig,Framework Regions, Immunoglobulin,Fv Antibody Fragment,Fv Fragment,Fv Fragment, Immunoglobulin,Fv Fragments, Immunoglobulin,Ig Framework Regions,Ig Variable Regions,Immunoglobulin Framework Regions,Immunoglobulin Fv Fragment,Immunoglobulin Variable Regions,Regions, Immunoglobulin Variable,Variable Regions, Ig,Variable Regions, Immunoglobulin |
|
| D007136 |
Immunoglobulins |
Multi-subunit proteins which function in IMMUNITY. They are produced by B LYMPHOCYTES from the IMMUNOGLOBULIN GENES. They are comprised of two heavy (IMMUNOGLOBULIN HEAVY CHAINS) and two light chains (IMMUNOGLOBULIN LIGHT CHAINS) with additional ancillary polypeptide chains depending on their isoforms. The variety of isoforms include monomeric or polymeric forms, and transmembrane forms (B-CELL ANTIGEN RECEPTORS) or secreted forms (ANTIBODIES). They are divided by the amino acid sequence of their heavy chains into five classes (IMMUNOGLOBULIN A; IMMUNOGLOBULIN D; IMMUNOGLOBULIN E; IMMUNOGLOBULIN G; IMMUNOGLOBULIN M) and various subclasses. |
Globulins, Immune,Immune Globulin,Immune Globulins,Immunoglobulin,Globulin, Immune |
|
| D007137 |
Immunoglobulin alpha-Chains |
The class of heavy chains found in IMMUNOGLOBULIN A. They have a molecular weight of approximately 58 kDa and contain about 470 amino acid residues arranged in four domains and an oligosaccharide component bound covalently to their Fc fragment constant region. |
Ig alpha Chains,Immunoglobulins, alpha-Chain,Immunoglobulin alpha-Chain,alpha-Chain Immunoglobulins,alpha-Immunoglobulin Heavy Chain,alpha-Immunoglobulin Heavy Chains,Chains, Ig alpha,Heavy Chain, alpha-Immunoglobulin,Heavy Chains, alpha-Immunoglobulin,Immunoglobulin alpha Chain,Immunoglobulin alpha Chains,Immunoglobulins, alpha Chain,alpha Chain Immunoglobulins,alpha Chains, Ig,alpha Immunoglobulin Heavy Chain,alpha Immunoglobulin Heavy Chains,alpha-Chain, Immunoglobulin,alpha-Chains, Immunoglobulin |
|
| D006801 |
Humans |
Members of the species Homo sapiens. |
Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D000916 |
Antibody Diversity |
The phenomenon of immense variability characteristic of ANTIBODIES. It enables the IMMUNE SYSTEM to react specifically against the essentially unlimited kinds of ANTIGENS it encounters. Antibody diversity is accounted for by three main theories: (1) the Germ Line Theory, which holds that each antibody-producing cell has genes coding for all possible antibody specificities, but expresses only the one stimulated by antigen; (2) the Somatic Mutation Theory, which holds that antibody-producing cells contain only a few genes, which produce antibody diversity by mutation; and (3) the Gene Rearrangement Theory, which holds that antibody diversity is generated by the rearrangement of IMMUNOGLOBULIN VARIABLE REGION gene segments during the differentiation of the ANTIBODY-PRODUCING CELLS. |
Germ Line Theory,Antibody Diversities,Diversities, Antibody,Diversity, Antibody,Germ Line Theories,Theories, Germ Line,Theory, Germ Line |
|
| D051379 |
Mice |
The common name for the genus Mus. |
Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus |
|
| D022801 |
Complementarity Determining Regions |
Three regions (CDR1; CDR2 and CDR3) of amino acid sequence in the IMMUNOGLOBULIN VARIABLE REGION that are highly divergent. Together the CDRs from the light and heavy immunoglobulin chains form a surface that is complementary to the antigen. These regions are also present in other members of the immunoglobulin superfamily, for example, T-cell receptors (RECEPTORS, ANTIGEN, T-CELL). |
Complementarity Determining Region,Complementarity Determining Region 1,Complementarity Determining Region 2,Complementarity Determining Region 3,Complementarity Determining Region I,Complementarity Determining Region II,Complementarity Determining Region III,Complementarity-Determining Region,Complementarity-Determining Region 3,Hypervariable Region, Immunoglobulin,Hypervariable Regions, Immunoglobulin,Third Complementarity-Determining Region,Complementarity-Determining Region 3s,Complementarity-Determining Region, Third,Complementarity-Determining Regions,Complementarity-Determining Regions, Third,Immunoglobulin Hypervariable Region,Immunoglobulin Hypervariable Regions,Region, Complementarity Determining,Region, Immunoglobulin Hypervariable,Regions, Complementarity Determining,Regions, Complementarity-Determining,Regions, Immunoglobulin Hypervariable,Third Complementarity Determining Region,Third Complementarity-Determining Regions |
|