Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. 1998

C G Galbraith, and R Skalak, and S Chien
Department of Bioengineering and Institute for Biomedical Engineering, University of California, San Diego, La Jolla, USA.

The morphology of endothelial cells in vivo depends on the local hemodynamic forces. Cells are polygonal and randomly oriented in areas of low shear stress, but they are elongated and aligned in the direction of fluid flow in regions of high shear stress. Endothelial cells in vitro also have a polygonal shape, but the application of shear stress orients and elongates the cells in the direction of fluid flow. The corresponding spatial reorganization of the cytoskeleton in response to the applied hemodynamic forces is unknown. In this study, we determined the spatial reorganization of the cytoskeleton throughout the volume of cultured bovine aortic endothelial cells after the cells had been exposed to a physiological level of shear stress for 0, 1.5, 3, 6, 12, or 24 h. The response of the monolayer to shear stress was not monotonic; it had three distinct phases. The first phase occurred within 3 h. The cells elongated and had more stress fibers, thicker intercellular junctions, and more apical microfilaments. After 6 h of exposure, the monolayer entered the second phase, where the cells exhibited characteristics of motility. The cells lost their dense peripheral bands and had more of their microtubule organizing centers and nuclei located in the upstream region of the cell. The third phase began after 12 h of exposure and was characterized by elongated cells oriented in the direction of fluid flow. The stress fibers in these cells were thicker and longer, and the heights of the intercellular junctions and microfilaments were increased. These results suggest that endothelial cells initially respond to shear stress by enhancing their attachments to the substrate and neighboring cells. The cells then demonstrate characteristics of motility as they realign. The cells eventually thicken their intercellular junctions and increase the amount of apical microfilaments. The time course of rearrangement can be described as a constrained motility that produces a new cytoskeletal organization that alters how the forces produced by fluid flow act on the cell and how the forces are transmitted to the cell interior and substrate.

UI MeSH Term Description Entries
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013314 Stress, Mechanical A purely physical condition which exists within any material because of strain or deformation by external forces or by non-uniform thermal expansion; expressed quantitatively in units of force per unit area. Mechanical Stress,Mechanical Stresses,Stresses, Mechanical
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

C G Galbraith, and R Skalak, and S Chien
May 2004, Trends in cardiovascular medicine,
C G Galbraith, and R Skalak, and S Chien
November 2004, Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology,
C G Galbraith, and R Skalak, and S Chien
January 1995, European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery,
C G Galbraith, and R Skalak, and S Chien
February 2009, PLoS pathogens,
C G Galbraith, and R Skalak, and S Chien
September 2015, Annals of biomedical engineering,
C G Galbraith, and R Skalak, and S Chien
December 2010, Zhonghua kou qiang yi xue za zhi = Zhonghua kouqiang yixue zazhi = Chinese journal of stomatology,
C G Galbraith, and R Skalak, and S Chien
September 2022, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
C G Galbraith, and R Skalak, and S Chien
April 1989, Journal of cellular physiology,
C G Galbraith, and R Skalak, and S Chien
April 1986, Proceedings of the National Academy of Sciences of the United States of America,
C G Galbraith, and R Skalak, and S Chien
February 2006, American journal of physiology. Cell physiology,
Copied contents to your clipboard!