Microinjected antisera against ductin affect gastrulation in Drosophila melanogaster. 1998

J Bohrmann, and H Lämmel
Institut für Biologie I (Zoologie), Universität Freiburg, Germany. bohrmjoh@ruf.uni-freiburg.de

Ductin is a putative connexon-forming protein in gap junctions of arthropods. To analyze the role of gap-junction mediated cell-cell communication during Drosophila embryogenesis, we used two different polyclonal anti-ductin sera. One antiserum was directed against ductin isolated from gap junctions of the lobster Nephrops whilst the other was raised against a nonapeptide at the N-terminus of ductin from Drosophila. Both antisera were found to inhibit, when microinjected into Drosophila ovarian follicles, the intercellular exchange of fluorescent tracer molecules between oocyte and follicle epithelium. This result indicates that Drosophila ductin plays a decisive role in gap-junctional communication and confirms the cytoplasmic location of the ductin N-terminus in gap junctions. On immunofluorescence preparations and immunoblots, the anti-ductin sera specifically recognized ovarian as well as embryonic antigens. Following microinjections of the antisera into embryos prior to gastrulation, significantly reduced rates of hatching larvae were obtained. Moreover, microinjections into the mid-ventral region of the embryos resulted in specific ventral defects that depended on the concentration of the ductin antibodies. In particular, larvae with ventral holes in their cuticles occurred with high frequency. During gastrulation, antiserum-injected embryos often developed defects in the middle region of their ventral furrow. Here, mesodermal cells failed to invaginate correctly and, thus, no cuticle was formed. We conclude that, during Drosophila embryogenesis, gap-junctional communication is required for epithelial integrity and morphogenetic events.

UI MeSH Term Description Entries
D007106 Immune Sera Serum that contains antibodies. It is obtained from an animal that has been immunized either by ANTIGEN injection or infection with microorganisms containing the antigen. Antisera,Immune Serums,Sera, Immune,Serums, Immune
D008845 Microinjections The injection of very small amounts of fluid, often with the aid of a microscope and microsyringes. Microinjection
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D011510 Proteolipids Protein-lipid combinations abundant in brain tissue, but also present in a wide variety of animal and plant tissues. In contrast to lipoproteins, they are insoluble in water, but soluble in a chloroform-methanol mixture. The protein moiety has a high content of hydrophobic amino acids. The associated lipids consist of a mixture of GLYCEROPHOSPHATES; CEREBROSIDES; and SULFOGLYCOSPHINGOLIPIDS; while lipoproteins contain PHOSPHOLIPIDS; CHOLESTEROL; and TRIGLYCERIDES.
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005775 Gastrula The developmental stage that follows BLASTULA or BLASTOCYST. It is characterized by the morphogenetic cell movements including invagination, ingression, and involution. Gastrulation begins with the formation of the PRIMITIVE STREAK, and ends with the formation of three GERM LAYERS, the body plan of the mature organism. Archenteron,Blastopore,Gastrocoele,Primitive Gut,Archenterons,Blastopores,Gastrocoeles,Gastrulas,Gut, Primitive,Guts, Primitive,Primitive Guts
D006180 Proton-Translocating ATPases Multisubunit enzymes that reversibly synthesize ADENOSINE TRIPHOSPHATE. They are coupled to the transport of protons across a membrane. ATP Dependent Proton Translocase,ATPase, F0,ATPase, F1,Adenosinetriphosphatase F1,F(1)F(0)-ATPase,F1 ATPase,H(+)-Transporting ATP Synthase,H(+)-Transporting ATPase,H(+)ATPase Complex,Proton-Translocating ATPase,Proton-Translocating ATPase Complex,Proton-Translocating ATPase Complexes,ATPase, F(1)F(0),ATPase, F0F1,ATPase, H(+),Adenosine Triphosphatase Complex,F(0)F(1)-ATP Synthase,F-0-ATPase,F-1-ATPase,F0F1 ATPase,F1-ATPase,F1F0 ATPase Complex,H(+)-ATPase,H(+)-Transporting ATP Synthase, Acyl-Phosphate-Linked,H+ ATPase,H+ Transporting ATP Synthase,H+-Translocating ATPase,Proton-Translocating ATPase, F0 Sector,Proton-Translocating ATPase, F1 Sector,ATPase Complex, Proton-Translocating,ATPase Complexes, Proton-Translocating,ATPase, H+,ATPase, H+-Translocating,ATPase, Proton-Translocating,Complex, Adenosine Triphosphatase,Complexes, Proton-Translocating ATPase,F 0 ATPase,F 1 ATPase,F0 ATPase,H+ Translocating ATPase,Proton Translocating ATPase,Proton Translocating ATPase Complex,Proton Translocating ATPase Complexes,Proton Translocating ATPase, F0 Sector,Proton Translocating ATPase, F1 Sector,Triphosphatase Complex, Adenosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D025262 Vacuolar Proton-Translocating ATPases Proton-translocating ATPases that are involved in acidification of a variety of intracellular compartments. Lysosomal F(1)F(0) ATPase,Lysosomal Proton-Translocating ATPases,V-Type ATPase,Vacuolar ATPase,Vacuolar F(1)F(0) ATPase,Vacuolar F(1)F(0) ATPases,Vacuolar H+-ATPase,Vacuolar Membrane H(+)-ATPase,ATPase, V-Type,ATPase, Vacuolar,ATPases, Lysosomal Proton-Translocating,H+-ATPase, Vacuolar,Lysosomal Proton Translocating ATPases,Proton-Translocating ATPases, Lysosomal,V Type ATPase,Vacuolar H+ ATPase

Related Publications

J Bohrmann, and H Lämmel
May 1988, Developmental biology,
J Bohrmann, and H Lämmel
October 1985, Developmental biology,
J Bohrmann, and H Lämmel
September 2020, Mechanisms of development,
J Bohrmann, and H Lämmel
December 2000, The International journal of developmental biology,
J Bohrmann, and H Lämmel
August 1977, Journal of embryology and experimental morphology,
Copied contents to your clipboard!