L-Type calcium channels mediate a slow excitatory synaptic transmission in rat midbrain dopaminergic neurons. 1998

A Bonci, and P Grillner, and N B Mercuri, and G Bernardi
Istituto Ricovero e Cura a Carattere Scientifico Santa Lucia, 00179 Rome, Italy.

Patch pipettes were used to record whole-cell synaptic currents under voltage-clamp in dopaminergic neurons in slices of rat substantia nigra pars compacta and ventral tegmental area. We report that dihydropyridines (DHPs), L-type Ca2+ channel antagonists, depressed a slow EPSC (EPSCslow) evoked by a train of focally delivered electrical stimuli. In fact, the amplitude of the EPSCslow was reduced by the DHP antagonists nifedipine (1-100 microM), nimodipine (1-100 microM), and isradipine (30 nM-100 microM) in a concentration-dependent and reversible manner. On the other hand, Bay-K 8644 (1 microM), an L-type Ca2+ channel agonist, increased the EPSCslow. The DHPs depressed the EPSCslow only when the high-frequency stimulation that was used to evoke this synaptic current lasted >70 msec. On the other hand, Bay-K 8644 increased the amplitude of the EPSCslow only when it was evoked by a train <70 msec. Moreover, the DHPs did not affect the EPSCfast, the IPSCfast, and the IPSCslow. The inhibition of the EPSCslow caused by the DHPs is attributed to presynaptic mechanisms because (1) the inward current generated by exogenously administered glutamate was not affected and (2) the EPSCslow was reduced to a similar degree even when the activation state of postsynaptic L-type Ca2+ channels was changed by holding the neurons at -100, -60, and +30 mV. Finally, a DHP-sensitive component of the EPSCslow could even be detected after the blockade of N-, Q-, and P-type Ca2+ channels by the combination of omega-conotoxin GVIA, omega-agatoxin IVA, and omega-conotoxin MVIIC. Taken together, these results indicate that under certain patterns of synaptic activity, L-type Ca2+ channels regulate the synaptic release of excitatory amino acids on the dopaminergic neurons of the ventral mesencephalon.

UI MeSH Term Description Entries
D008297 Male Males
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002120 Calcium Channel Agonists Agents that increase calcium influx into calcium channels of excitable tissues. This causes vasoconstriction in VASCULAR SMOOTH MUSCLE and/or CARDIAC MUSCLE cells as well as stimulation of insulin release from pancreatic islets. Therefore, tissue-selective calcium agonists have the potential to combat cardiac failure and endocrinological disorders. They have been used primarily in experimental studies in cell and tissue culture. Calcium Channel Activators,Calcium Channel Agonists, Exogenous,Calcium Channel Agonist,Exogenous Calcium Channel Agonists,Activators, Calcium Channel,Agonist, Calcium Channel,Agonists, Calcium Channel,Channel Activators, Calcium,Channel Agonist, Calcium,Channel Agonists, Calcium
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001498 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester A dihydropyridine derivative, which, in contrast to NIFEDIPINE, functions as a calcium channel agonist. The compound facilitates Ca2+ influx through partially activated voltage-dependent Ca2+ channels, thereby causing vasoconstrictor and positive inotropic effects. It is used primarily as a research tool. BK-8644,Bay R5417,Bay-K-8644,Bay-K-8644, (+)-Isomer,Bay-K-8644, (+-)-Isomer,Bay-K-8644, (-)-Isomer,Bay-K8644,Bay-R-5417,BK 8644,BK8644,Bay K 8644,Bay K8644,Bay R 5417,BayK8644,BayR5417,R5417, Bay
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

A Bonci, and P Grillner, and N B Mercuri, and G Bernardi
January 2003, Neuro-Signals,
A Bonci, and P Grillner, and N B Mercuri, and G Bernardi
October 1996, Neuroscience,
A Bonci, and P Grillner, and N B Mercuri, and G Bernardi
September 1995, Brain research,
A Bonci, and P Grillner, and N B Mercuri, and G Bernardi
November 2001, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A Bonci, and P Grillner, and N B Mercuri, and G Bernardi
November 2013, Molecular pain,
A Bonci, and P Grillner, and N B Mercuri, and G Bernardi
September 2006, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A Bonci, and P Grillner, and N B Mercuri, and G Bernardi
October 1989, Neuroscience letters,
A Bonci, and P Grillner, and N B Mercuri, and G Bernardi
October 2000, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A Bonci, and P Grillner, and N B Mercuri, and G Bernardi
November 1996, The Journal of pharmacology and experimental therapeutics,
A Bonci, and P Grillner, and N B Mercuri, and G Bernardi
October 2006, Neuron,
Copied contents to your clipboard!