Transcriptional regulation of the GluR2 gene: neural-specific expression, multiple promoters, and regulatory elements. 1998

S J Myers, and J Peters, and Y Huang, and M B Comer, and F Barthel, and R Dingledine
Department of Pharmacology, Emory University, Atlanta, Georgia 30322, USA.

To understand how neurons control the expression of the AMPA receptor subunit GluR2, we cloned the 5' proximal region of the rat gene and investigated GluR2 promoter activity by transient transfection. RNase protection and primer extension of rat brain mRNA revealed multiple transcription initiation sites from -340 to -481 bases upstream of the GluR2 AUG codon. The relative use of 5' start sites was different in cortex and cerebellum, indicating complexity of GluR2 transcript expression among different sets of neurons. When GluR2 promoter activity was investigated by plasmid transfection into cultured cortical neurons, cortical glia, and C6 glioma cells, the promoter construct with the strongest activity, per transfected cell, was 29.4-fold (+/- 3.7) more active in neurons than in non-neural cells. Immunostaining of cortical cultures showed that >97% of the luciferase-positive cells also expressed the neuronal marker MAP-2. Evaluation of internal deletion and substitution mutations identified a functional repressor element I RE1-like silencer and functional Sp1 and nuclear respiratory factor-1 (NRF-1) elements within a GC-rich proximal GluR2 promoter region. The GluR2 silencer reduced promoter activity in glia and non-neuronal cell lines by two- to threefold, was without effect in cortical neurons, and could bind the RE1-silencing transcription factor (REST) because cotransfection of REST into neurons reduced GluR2 promoter activity in a silencer-dependent manner. Substitution of the GluR2 silencer by the homologous NaII RE1 silencer further reduced GluR2 promoter activity in non-neuronal cells by 30-47%. Maximal positive GluR2 promoter activity required both Sp1 and NRF-1 cis elements and an interelement nucleotide bridge sequence. These results indicate that GluR2 transcription initiates from multiple sites, is highly neuronal selective, and is regulated by three regulatory elements in the 5' proximal promoter region.

UI MeSH Term Description Entries
D008156 Luciferases Enzymes that oxidize certain LUMINESCENT AGENTS to emit light (PHYSICAL LUMINESCENCE). The luciferases from different organisms have evolved differently so have different structures and substrates. Luciferase
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D010442 Peptide Chain Initiation, Translational A process of GENETIC TRANSLATION whereby the formation of a peptide chain is started. It includes assembly of the RIBOSOME components, the MESSENGER RNA coding for the polypeptide to be made, INITIATOR TRNA, and PEPTIDE INITIATION FACTORS; and placement of the first amino acid in the peptide chain. The details and components of this process are unique for prokaryotic protein biosynthesis and eukaryotic protein biosynthesis. Chain Initiation, Peptide, Translational,Protein Biosynthesis Initiation,Protein Chain Initiation, Translational,Protein Translation Initiation,Translation Initiation, Genetic,Translation Initiation, Protein,Translational Initiation, Protein,Translational Peptide Chain Initiation,Biosynthesis Initiation, Protein,Genetic Translation Initiation,Initiation, Genetic Translation,Initiation, Protein Biosynthesis,Initiation, Protein Translation,Initiation, Protein Translational,Protein Translational Initiation
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S J Myers, and J Peters, and Y Huang, and M B Comer, and F Barthel, and R Dingledine
February 1995, The Journal of biological chemistry,
S J Myers, and J Peters, and Y Huang, and M B Comer, and F Barthel, and R Dingledine
July 2006, BMC bioinformatics,
S J Myers, and J Peters, and Y Huang, and M B Comer, and F Barthel, and R Dingledine
March 2003, Sheng wu gong cheng xue bao = Chinese journal of biotechnology,
S J Myers, and J Peters, and Y Huang, and M B Comer, and F Barthel, and R Dingledine
September 2021, Sheng wu gong cheng xue bao = Chinese journal of biotechnology,
S J Myers, and J Peters, and Y Huang, and M B Comer, and F Barthel, and R Dingledine
September 1993, The Journal of biological chemistry,
S J Myers, and J Peters, and Y Huang, and M B Comer, and F Barthel, and R Dingledine
July 2015, Briefings in bioinformatics,
S J Myers, and J Peters, and Y Huang, and M B Comer, and F Barthel, and R Dingledine
October 2010, BMC genomics,
S J Myers, and J Peters, and Y Huang, and M B Comer, and F Barthel, and R Dingledine
January 2007, Molecular systems biology,
S J Myers, and J Peters, and Y Huang, and M B Comer, and F Barthel, and R Dingledine
December 1996, Neurochemistry international,
S J Myers, and J Peters, and Y Huang, and M B Comer, and F Barthel, and R Dingledine
February 1989, Molecular endocrinology (Baltimore, Md.),
Copied contents to your clipboard!