Insulin stimulates pp120 endocytosis in cells co-expressing insulin receptors. 1998

C V Choice, and M J Howard, and M N Poy, and M H Hankin, and S M Najjar
Department of Pharmacology and Therapeutics, Medical College of Ohio, Toledo, Ohio 43614, USA.

pp120, a substrate of the insulin receptor tyrosine kinase, is a plasma membrane glycoprotein that is expressed in the hepatocyte as two spliced isoforms differing by the presence (full-length) or absence (truncated) of most of the intracellular domain including all phosphorylation sites. Co-expression of full-length pp120, but not its phosphorylation-defective isoforms, increased receptor-mediated insulin endocytosis and degradation in NIH 3T3 fibroblasts. We, herein, examined whether internalization of pp120 is required to mediate its effect on insulin endocytosis. The amount of full-length pp120 expressed at the cell surface membrane, as measured by biotin labeling, markedly decreased in response to insulin only when insulin receptors were co-expressed. In contrast, when phosphorylation-defective pp120 mutants were co-expressed, the amount of pp120 expressed at the cell surface did not decrease in response to insulin. Indirect immunofluorescence analysis revealed that upon insulin treatment of cells co-expressing insulin receptors, full-length, but not truncated, pp120 co-localized with alpha-adaptin in the adaptor protein complex that anchors endocytosed proteins to clathrin-coated pits. This suggests that full-length pp120 is part of a complex of proteins required for receptor-mediated insulin endocytosis and that formation of this complex is regulated by insulin-induced pp120 phosphorylation by the receptor tyrosine kinase. In vitro GST binding assays and co-immunoprecipitation experiments in intact cells further revealed that pp120 did not bind directly to the insulin receptor and that its association with the receptor may be mediated by other cellular proteins.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011233 Precipitin Tests Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate. Precipitin Test,Test, Precipitin,Tests, Precipitin
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

C V Choice, and M J Howard, and M N Poy, and M H Hankin, and S M Najjar
October 1997, The American journal of physiology,
C V Choice, and M J Howard, and M N Poy, and M H Hankin, and S M Najjar
April 2005, Biochemical and biophysical research communications,
C V Choice, and M J Howard, and M N Poy, and M H Hankin, and S M Najjar
May 1999, Journal of lipid research,
C V Choice, and M J Howard, and M N Poy, and M H Hankin, and S M Najjar
May 1998, The Journal of biological chemistry,
C V Choice, and M J Howard, and M N Poy, and M H Hankin, and S M Najjar
May 1987, Proceedings of the National Academy of Sciences of the United States of America,
C V Choice, and M J Howard, and M N Poy, and M H Hankin, and S M Najjar
November 2003, Journal of endocrinological investigation,
C V Choice, and M J Howard, and M N Poy, and M H Hankin, and S M Najjar
March 1986, The Journal of biological chemistry,
C V Choice, and M J Howard, and M N Poy, and M H Hankin, and S M Najjar
May 1999, Molecular cell biology research communications : MCBRC,
C V Choice, and M J Howard, and M N Poy, and M H Hankin, and S M Najjar
November 1983, Biochemical and biophysical research communications,
C V Choice, and M J Howard, and M N Poy, and M H Hankin, and S M Najjar
June 1988, European journal of cell biology,
Copied contents to your clipboard!