Conformational changes in DNA gyrase revealed by limited proteolysis. 1998

S C Kampranis, and A Maxwell
Department of Biochemistry, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom.

We have used limited proteolysis to identify conformational changes in DNA gyrase. Gyrase exhibits a proteolytic fingerprint dominated by two fragments, one of approximately 62 kDa, deriving from the A protein, and another of approximately 25 kDa from the B protein. Quinolone binding to the enzyme-DNA complex induces a conformational change which is reflected in the protection of the C-terminal 47-kDa domain of the B protein. An active site mutant (Tyr122 to Ser in the A protein) that binds quinolones but cannot cleave DNA still gives the quinolone proteolytic pattern, while stabilization of a cleaved-DNA intermediate by calcium ions does not reveal any protection, suggesting that the quinolone-induced conformational change is different from an "open-gate" state of the enzyme. A quinolone-resistant mutant of gyrase fails to give the characteristic quinolone-associated proteolytic signature. The ATP-induced dimerization of the B subunits is a key step of the gyrase mechanism. The proteolytic fingerprint of this conformation (stabilized by the non-hydrolyzable ATP analog 5'-adenylyl-beta, gamma-imidodiphosphate (ADPNP) shows a protection of the 43-kDa N-terminal domain of the B subunit. The presence of quinolones does not prevent dimerization since incubation of the enzyme-DNA complex with both ADPNP and quinolones gives rise to a complex whose proteolytic pattern retains the characteristic signature of dimerization but has lost the quinolone-induced protection. As a result, the quinolone-gyrase complex can still hydrolyze ATP, albeit with different kinetic characteristics. We interpret the proteolytic signatures observed in terms of four complexes of gyrase, each representing a particular conformational state.

UI MeSH Term Description Entries
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D004250 DNA Topoisomerases, Type II DNA TOPOISOMERASES that catalyze ATP-dependent breakage of both strands of DNA, passage of the unbroken strands through the breaks, and rejoining of the broken strands. These enzymes bring about relaxation of the supercoiled DNA and resolution of a knotted circular DNA duplex. DNA Topoisomerase (ATP-Hydrolysing),DNA Topoisomerase II,DNA Topoisomerase II alpha,DNA Topoisomerase II beta,DNA Type 2 Topoisomerase,TOP2A Protein,TOP2B Protein,Topoisomerase II,Topoisomerase II alpha,Topoisomerase II beta,Type II DNA Topoisomerase,alpha, Topoisomerase II,beta, Topoisomerase II
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000266 Adenylyl Imidodiphosphate 5'-Adenylic acid, monoanhydride with imidodiphosphoric acid. An analog of ATP, in which the oxygen atom bridging the beta to the gamma phosphate is replaced by a nitrogen atom. It is a potent competitive inhibitor of soluble and membrane-bound mitochondrial ATPase and also inhibits ATP-dependent reactions of oxidative phosphorylation. Adenyl Imidodiphosphate,gamma-Imino-ATP,AMP-PNP,AMPPNP,ATP(beta,gamma-NH),Adenosine 5'-(beta,gamma-Imino)triphosphate,Adenylimidodiphosphate,Adenylylimidodiphosphate,Mg AMP-PNP,Mg-5'-Adenylylimidodiphosphate,beta,gamma-imido-ATP,gamma-Imido-ATP,AMP-PNP, Mg,Imidodiphosphate, Adenyl,Imidodiphosphate, Adenylyl,Mg 5' Adenylylimidodiphosphate,Mg AMP PNP,beta,gamma imido ATP,gamma Imido ATP,gamma Imino ATP
D015363 Quinolones A group of derivatives of naphthyridine carboxylic acid, quinoline carboxylic acid, or NALIDIXIC ACID. Ketoquinoline,Ketoquinolines,Oxoquinoline,Oxoquinolines,Quinolinone,Quinolinones,Quinolone
D019281 Dimerization The process by which two molecules of the same chemical composition form a condensation product or polymer. Dimerizations

Related Publications

S C Kampranis, and A Maxwell
January 1998, Methods in molecular biology (Clifton, N.J.),
S C Kampranis, and A Maxwell
August 1988, Journal of protein chemistry,
S C Kampranis, and A Maxwell
December 1994, European journal of biochemistry,
S C Kampranis, and A Maxwell
February 1997, Journal of molecular biology,
Copied contents to your clipboard!