Oncogenic Ras modulates epidermal growth factor responsiveness in endometrial carcinomas. 1998

K Kato, and Y Ueoka, and K Kato, and T Tamura, and J Nishida, and N Wake
Department of Reproductive Physiology and Endocrinology, Kyushu University, Oita, Japan.

Since the majority of endometrial carcinomas do not contain any detectable ras mutations, the precise contribution of aberrant Ras function, if any, to endometrial carcinoma development remains to be determined. Since there is considerable evidence that Ras transformation is associated with a decreased requirement for growth factors, we compared the growth response of endometrial carcinoma cells harbouring wild-type (Ishikawa cells) or mutated (HHUA cells) K-ras to epidermal growth factor (EGF). K-ras mutation did not significantly affect the level of the EGF receptor (EGFR) expressed in these carcinoma cells. EGF could stimulate the growth of Ishikawa, but not HHUA cells. Furthermore, EGF caused elevation of Ras-GTP levels in Ishikawa, but not HHUA cells. However, the introduction of mutated, but not normal, K-ras into Ishikawa cells rendered them non-responsive to EGF growth stimulation. Thus, the presence of mutated K-ras alone modulated the growth response of endometrial carcinoma cells to EGF. An inhibitor of the EGFR tyrosine kinase activity could prevent soft agar colony formation of Ishikawa cells, but not HHUA or mutant K-ras(12V)-transfected Ishikawa cells. Taken together, these results suggest that mutated K-ras causes a loss of responsiveness to EGF stimulation and that EGFR function is dispensable for the growth of mutant Ras-positive endometrial carcinoma cells.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011905 Genes, ras Family of retrovirus-associated DNA sequences (ras) originally isolated from Harvey (H-ras, Ha-ras, rasH) and Kirsten (K-ras, Ki-ras, rasK) murine sarcoma viruses. Ras genes are widely conserved among animal species and sequences corresponding to both H-ras and K-ras genes have been detected in human, avian, murine, and non-vertebrate genomes. The closely related N-ras gene has been detected in human neuroblastoma and sarcoma cell lines. All genes of the family have a similar exon-intron structure and each encodes a p21 protein. Ha-ras Genes,Ki-ras Genes,N-ras Genes,c-Ha-ras Genes,c-Ki-ras Genes,c-N-ras Genes,ras Genes,v-Ha-ras Genes,v-Ki-ras Genes,H-ras Genes,H-ras Oncogenes,Ha-ras Oncogenes,K-ras Genes,K-ras Oncogenes,Ki-ras Oncogenes,N-ras Oncogenes,c-H-ras Genes,c-H-ras Proto-Oncogenes,c-Ha-ras Proto-Oncogenes,c-K-ras Genes,c-K-ras Proto-Oncogenes,c-Ki-ras Proto-Oncogenes,c-N-ras Proto-Oncogenes,ras Oncogene,v-H-ras Genes,v-H-ras Oncogenes,v-Ha-ras Oncogenes,v-K-ras Genes,v-K-ras Oncogenes,v-Ki-ras Oncogenes,Gene, Ha-ras,Gene, Ki-ras,Gene, v-Ha-ras,Gene, v-Ki-ras,Genes, Ha-ras,Genes, Ki-ras,Genes, N-ras,Genes, v-Ha-ras,Genes, v-Ki-ras,H ras Genes,H ras Oncogenes,H-ras Gene,H-ras Oncogene,Ha ras Genes,Ha ras Oncogenes,Ha-ras Gene,Ha-ras Oncogene,K ras Genes,K ras Oncogenes,K-ras Gene,K-ras Oncogene,Ki ras Genes,Ki ras Oncogenes,Ki-ras Gene,Ki-ras Oncogene,N ras Genes,N ras Oncogenes,N-ras Gene,N-ras Oncogene,c H ras Genes,c H ras Proto Oncogenes,c Ha ras Genes,c Ha ras Proto Oncogenes,c K ras Genes,c K ras Proto Oncogenes,c Ki ras Genes,c Ki ras Proto Oncogenes,c N ras Genes,c N ras Proto Oncogenes,c-H-ras Gene,c-H-ras Proto-Oncogene,c-Ha-ras Gene,c-Ha-ras Proto-Oncogene,c-K-ras Gene,c-K-ras Proto-Oncogene,c-Ki-ras Gene,c-Ki-ras Proto-Oncogene,c-N-ras Gene,c-N-ras Proto-Oncogene,ras Gene,ras Oncogenes,v H ras Genes,v H ras Oncogenes,v Ha ras Genes,v Ha ras Oncogenes,v K ras Genes,v K ras Oncogenes,v Ki ras Genes,v Ki ras Oncogenes,v-H-ras Gene,v-H-ras Oncogene,v-Ha-ras Gene,v-Ha-ras Oncogene,v-K-ras Gene,v-K-ras Oncogene,v-Ki-ras Gene,v-Ki-ras Oncogene
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006873 Hydroquinones Derivatives of hydroquinone (1,4-dihydrobenzene) made by reduction of BENZOQUINONES. Quinol,p-Dihydroxybenzenes,para-Dihydroxybenzenes,Quinols,p Dihydroxybenzenes,para Dihydroxybenzenes
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

K Kato, and Y Ueoka, and K Kato, and T Tamura, and J Nishida, and N Wake
January 1989, Journal of steroid biochemistry,
K Kato, and Y Ueoka, and K Kato, and T Tamura, and J Nishida, and N Wake
June 1996, Digestive diseases and sciences,
K Kato, and Y Ueoka, and K Kato, and T Tamura, and J Nishida, and N Wake
May 2010, BMC cancer,
K Kato, and Y Ueoka, and K Kato, and T Tamura, and J Nishida, and N Wake
May 1990, Cancer,
K Kato, and Y Ueoka, and K Kato, and T Tamura, and J Nishida, and N Wake
April 1990, Gastroenterology,
K Kato, and Y Ueoka, and K Kato, and T Tamura, and J Nishida, and N Wake
January 1999, Biulleten' eksperimental'noi biologii i meditsiny,
K Kato, and Y Ueoka, and K Kato, and T Tamura, and J Nishida, and N Wake
October 1998, The Journal of biological chemistry,
K Kato, and Y Ueoka, and K Kato, and T Tamura, and J Nishida, and N Wake
May 1989, Klinische Wochenschrift,
K Kato, and Y Ueoka, and K Kato, and T Tamura, and J Nishida, and N Wake
December 1996, Japanese journal of clinical oncology,
K Kato, and Y Ueoka, and K Kato, and T Tamura, and J Nishida, and N Wake
May 2008, The Journal of biological chemistry,
Copied contents to your clipboard!