Growth hormone (GH) receptors, binding proteins and IGF-I concentrations in the serum of transgenic mice expressing bovine GH agonist or antagonist. 1998

A I Sotelo, and A Bartke, and J J Kopchick, and J R Knapp, and D Turyn
Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.

We have examined the regulation of hepatic growth hormone receptors (GH-R) and serum GH binding proteins (GHBP) in transgenic mice expressing an antagonist of bovine growth hormone (bGH), G119K-bGH, and consequently exhibiting a growth suppressed dwarf phenotype. Specific GHBP could be measured in transgenic dwarf mouse serum only by immunological methods (RIA), because these mice have a very high concentration of mutated bGH in circulation (> 1 microgram/ml) and, therefore, almost all GHBP is bound to G119K-bGH and cannot be quantitated in binding assays. The concentrations of GHBP were 0.6 +/- 0.4 nM and 1.7 +/- 0.4 nM for normal and dwarf mice respectively. The concentrations of free GHBP in normal mice and in transgenic mice expressing wild-type GH can be calculated using chromatographic techniques as the dissociation constant (Kd) and the ratio of bound 125I-GH to free 125I-GH in the serum ([GHBP]free = B/F.Kd). In agreement with the assumption that GHBP reflects GH-R status, liver uptake of injected labeled bGH was greatly reduced in transgenic dwarfs in comparison with normal mice or with transgenic mice expressing wild-type bGH (liver/blood ratio of 0.48 +/- 0.21, 2.7 +/- 0.2, and 1.3 +/- 0.3 respectively) indicating that the high concentration of the mutated bGH (G119K-bGH) prevents labeled bGH uptake, as was expected from the dwarf phenotype. 125I-bGH taken up by the liver of transgenic dwarf mice was found in a smaller molecular species than in normal mice, compatible with the presence of 1:1 [(GH-R):GH] complexes instead of the 2:1 [(GH-R)2:GH] or 2:2 [(GHBP)2:(GH)2] complexes found in normal mice. The concentration of IGF-I, the principal mediator of GH activity, in the G119K-bGH transgenic mice was correlated with the concentration of free GHBP. This allowed us to use free GHBP concentration as a marker of the effects of the active endogenous hormone (mGH) on liver receptors in the presence of different concentrations of the antagonist of GH. The levels of GHBP in serum, as well as the concentration of GH-R in liver microsomes from mice expressing the bGH antagonist, are up-regulated by the high concentration of G119K-bGH (85%), but significantly less so than that which could be expected for the same concentration of native GH (220-275%). This up-regulation suggests that the G119K-bGH antagonist is internalized and induces synthesis of the receptor and of the binding protein.

UI MeSH Term Description Entries
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011986 Receptors, Somatotropin Cell surface proteins that bind GROWTH HORMONE with high affinity and trigger intracellular changes influencing the behavior of cells. Activation of growth hormone receptors regulates amino acid transport through cell membranes, RNA translation to protein, DNA transcription, and protein and amino acid catabolism in many cell types. Many of these effects are mediated indirectly through stimulation of the release of somatomedins. Growth Hormone Receptors,Receptors, Growth Hormone,Somatomammotropin Receptors,Somatotropin Receptors,Growth Hormone Receptor,Receptor, Growth Hormone,Receptors, Somatomammotropin,Somatomammotropin Receptor,Somatotropin Receptor,Hormone Receptor, Growth,Hormone Receptors, Growth
D001835 Body Weight The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms. Body Weights,Weight, Body,Weights, Body
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002847 Chromatography, Agarose A method of gel filtration chromatography using agarose, the non-ionic component of agar, for the separation of compounds with molecular weights up to several million. Chromatography, Sepharose,Agarose Chromatography,Sepharose Chromatography,Agarose Chromatographies,Chromatographies, Agarose,Chromatographies, Sepharose,Sepharose Chromatographies
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography

Related Publications

A I Sotelo, and A Bartke, and J J Kopchick, and J R Knapp, and D Turyn
March 1991, Endocrinology,
A I Sotelo, and A Bartke, and J J Kopchick, and J R Knapp, and D Turyn
July 1999, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
A I Sotelo, and A Bartke, and J J Kopchick, and J R Knapp, and D Turyn
February 1997, Endocrinology,
A I Sotelo, and A Bartke, and J J Kopchick, and J R Knapp, and D Turyn
September 1992, Transgenic research,
A I Sotelo, and A Bartke, and J J Kopchick, and J R Knapp, and D Turyn
January 1995, The Journal of clinical endocrinology and metabolism,
A I Sotelo, and A Bartke, and J J Kopchick, and J R Knapp, and D Turyn
May 1997, Endocrinology,
A I Sotelo, and A Bartke, and J J Kopchick, and J R Knapp, and D Turyn
February 1995, Endocrinology,
A I Sotelo, and A Bartke, and J J Kopchick, and J R Knapp, and D Turyn
September 1991, Endocrinology,
A I Sotelo, and A Bartke, and J J Kopchick, and J R Knapp, and D Turyn
July 1991, Biology of reproduction,
Copied contents to your clipboard!