Classification of breast cancer cells on the basis of a functional assay for estrogen receptor. 1998

D K Biswas, and L Averboukh, and S Sheng, and K Martin, and D S Ewaniuk, and T F Jawde, and F Wang, and A B Pardee
Division of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. biswas@mbcrr.harvard.edu

BACKGROUND The receptor (ER) for estrogen (E2) is routinely assayed as a marker to determine the feasibility of anti-hormone therapy against breast cancer because ER-positive (ER+) tumors are much more likely to respond to anti-hormone therapy than are ER-negative (ER-). However 40% of ER+ breast cancer patients do not respond to anti-hormone therapy. We suggest that this unpredictability of therapeutic responses lies in the current ER assays, which measure only an initial component of the E2-responsive pathway, and that the difference depends upon altered downstream processes. We propose a functional criterion that subclassifies breast cancers on the basis of specific binding of ER to its cognate DNA sequence, the estrogen response element (ERE). METHODS ER was identified in breast cancer cell lines by immunofluorescence assay, Western blot analysis, identification of ER-specific mRNA, and by interaction of the ER-ERE complex with three different ER-specific antibodies. ER-ERE complex formation was measured by electrophoretic mobility shift assay (EMSA). Transactivation of the E2-responsive gene was studied by transfection of cells with fusion gene construct with the promoter-containing ERE sequence and assay of reporter gene activity in the cell extracts. RESULTS The growth of ER+ T47D cells was sensitive to tamoxifen, ICI-182,780, and ethynyl estradiol (EE2), whereas another ER+ breast cancer cell line, 21 PT, was resistant to these compounds. The estrogen receptor (ER) in the nuclear extracts of MCF-7 and T47D demonstrated hormone-dependent interaction with the response element (ERE) and also downstream transactivation of the E2-responsive PS2 promoter. But in the 21 PT cell line that was designated as ER- on the basis of ligand-binding assay and was found to be ER+ by all the other ER assays, ER-ERE interaction and PS2 promoter transactivation were independent of hormone. CONCLUSIONS On the basis of the downstream functional assay of ER interaction with ERE, ER+ breast tumor cells can be subclassified into two categories. The first is E2-dependent (ERd+) and these cells should respond to anti-hormone therapy. The second type of ER interacts with ERE independent of E2 (ERi+) and constitutively transactivates responsive genes. It is predicted that the latter type of breast cancers will not respond to antihormone therapy.

UI MeSH Term Description Entries
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011960 Receptors, Estrogen Cytoplasmic proteins that bind estrogens and migrate to the nucleus where they regulate DNA transcription. Evaluation of the state of estrogen receptors in breast cancer patients has become clinically important. Estrogen Receptor,Estrogen Receptors,Estrogen Nuclear Receptor,Estrogen Receptor Type I,Estrogen Receptor Type II,Estrogen Receptors Type I,Estrogen Receptors Type II,Receptor, Estrogen Nuclear,Receptors, Estrogen, Type I,Receptors, Estrogen, Type II,Nuclear Receptor, Estrogen,Receptor, Estrogen
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D001943 Breast Neoplasms Tumors or cancer of the human BREAST. Breast Cancer,Breast Tumors,Cancer of Breast,Breast Carcinoma,Cancer of the Breast,Human Mammary Carcinoma,Malignant Neoplasm of Breast,Malignant Tumor of Breast,Mammary Cancer,Mammary Carcinoma, Human,Mammary Neoplasm, Human,Mammary Neoplasms, Human,Neoplasms, Breast,Tumors, Breast,Breast Carcinomas,Breast Malignant Neoplasm,Breast Malignant Neoplasms,Breast Malignant Tumor,Breast Malignant Tumors,Breast Neoplasm,Breast Tumor,Cancer, Breast,Cancer, Mammary,Cancers, Mammary,Carcinoma, Breast,Carcinoma, Human Mammary,Carcinomas, Breast,Carcinomas, Human Mammary,Human Mammary Carcinomas,Human Mammary Neoplasm,Human Mammary Neoplasms,Mammary Cancers,Mammary Carcinomas, Human,Neoplasm, Breast,Neoplasm, Human Mammary,Neoplasms, Human Mammary,Tumor, Breast
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D004965 Estrogen Antagonists Compounds which inhibit or antagonize the action or biosynthesis of estrogenic compounds. Estradiol Antagonists,Antagonists, Estradiol,Antagonists, Estrogen
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

D K Biswas, and L Averboukh, and S Sheng, and K Martin, and D S Ewaniuk, and T F Jawde, and F Wang, and A B Pardee
January 1985, Pathologica,
D K Biswas, and L Averboukh, and S Sheng, and K Martin, and D S Ewaniuk, and T F Jawde, and F Wang, and A B Pardee
November 1985, Zhonghua zhong liu za zhi [Chinese journal of oncology],
D K Biswas, and L Averboukh, and S Sheng, and K Martin, and D S Ewaniuk, and T F Jawde, and F Wang, and A B Pardee
January 1983, Frontiers of radiation therapy and oncology,
D K Biswas, and L Averboukh, and S Sheng, and K Martin, and D S Ewaniuk, and T F Jawde, and F Wang, and A B Pardee
December 1990, The Journal of steroid biochemistry and molecular biology,
D K Biswas, and L Averboukh, and S Sheng, and K Martin, and D S Ewaniuk, and T F Jawde, and F Wang, and A B Pardee
June 1992, Pathology, research and practice,
D K Biswas, and L Averboukh, and S Sheng, and K Martin, and D S Ewaniuk, and T F Jawde, and F Wang, and A B Pardee
September 1975, Journal of the National Cancer Institute,
D K Biswas, and L Averboukh, and S Sheng, and K Martin, and D S Ewaniuk, and T F Jawde, and F Wang, and A B Pardee
April 1978, Gan,
D K Biswas, and L Averboukh, and S Sheng, and K Martin, and D S Ewaniuk, and T F Jawde, and F Wang, and A B Pardee
December 2003, International journal of cancer,
D K Biswas, and L Averboukh, and S Sheng, and K Martin, and D S Ewaniuk, and T F Jawde, and F Wang, and A B Pardee
September 2015, Trends in endocrinology and metabolism: TEM,
D K Biswas, and L Averboukh, and S Sheng, and K Martin, and D S Ewaniuk, and T F Jawde, and F Wang, and A B Pardee
April 1992, American journal of obstetrics and gynecology,
Copied contents to your clipboard!