Developmental appearance of oligodendrocytes in the embryonic chick retina. 1998

K Ono, and T Tsumori, and T Kishi, and S Yokota, and Y Yasui
Department of Anatomy, Shimane Medical University, Izumo, Japan. katsono@shimane-med.ac.jp

The axons of the optic nerve layer are known to be myelinated by oligodendrocytes in the chick retina. The development of the retinal oligodendrocytes has been studied immunohistochemically with antibodies against oligodendrocyte lineage: monoclonal antibodies O4 and O1, and an antibody against myelin basic protein. O4 positive (O4+) cells were first detected in the retina on the tenth day of incubation (embryonic day (E)10, stage 36). The labeled cells were located in the optic nerve layer close to the optic fissure. Most were unipolar in shape, extending a leading process with a growth cone toward the periphery of the retina. By E12, unipolar O4+ cells had spread to the middle of the retina. Many O4+ cells close to the optic fissure showed radial arrangement with extension of processes toward the inner limiting membrane. O1+ oligodendrocytes were first observed in the E14 retina positioned just above (interiorly to) retinal ganglion cells. These labeled cells extended fine processes in the optic nerve layer. Limited numbers of myelin basic protein-positive cells were present by E16 and located interiorly to the retinal ganglion cells. In addition to the oligodendrocyte in the optic nerve layer, a limited number of O4+ cells were observed in the inner nuclear layer by E14, and they became O1+ by E18. Furthermore, explant culture experiments showed E10 to be the youngest stage at which the retina contained oligodendrocyte precursors. An intraventricular inj ection of fluorescent dye 1,1',dioctadecyl-3,3,3',3-tetramethylindocarbocyanine perchlorate (DiI) at E6 yielded O4+/DiI+ cells in the retina at E10, which provided direct evidence to support migration of oligodendrocyte precursor into the retina. The present results demonstrated the sequential appearance of the cells of oligodendrocyte lineage and the detailed morphology of the developing oligodendrocytes in the retina. These morphologic features strongly suggested that retinal oligodendrocytes were derived from the optic nerve and spread by migration through the optic nerve layer.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007276 Injections, Intraventricular Injections into the cerebral ventricles. Intraventricular Injections,Injection, Intraventricular,Intraventricular Injection
D009836 Oligodendroglia A class of large neuroglial (macroglial) cells in the central nervous system. Oligodendroglia may be called interfascicular, perivascular, or perineuronal (not the same as SATELLITE CELLS, PERINEURONAL of GANGLIA) according to their location. They form the insulating MYELIN SHEATH of axons in the central nervous system. Interfascicular Oligodendroglia,Oligodendrocytes,Perineuronal Oligodendroglia,Perineuronal Satellite Oligodendroglia Cells,Perivascular Oligodendroglia,Satellite Cells, Perineuronal, Oligodendroglia,Perineuronal Satellite Oligodendrocytes,Interfascicular Oligodendroglias,Oligodendrocyte,Oligodendrocyte, Perineuronal Satellite,Oligodendrocytes, Perineuronal Satellite,Oligodendroglia, Interfascicular,Oligodendroglia, Perineuronal,Oligodendroglia, Perivascular,Perineuronal Satellite Oligodendrocyte,Satellite Oligodendrocyte, Perineuronal,Satellite Oligodendrocytes, Perineuronal
D009900 Optic Nerve The 2nd cranial nerve which conveys visual information from the RETINA to the brain. The nerve carries the axons of the RETINAL GANGLION CELLS which sort at the OPTIC CHIASM and continue via the OPTIC TRACTS to the brain. The largest projection is to the lateral geniculate nuclei; other targets include the SUPERIOR COLLICULI and the SUPRACHIASMATIC NUCLEI. Though known as the second cranial nerve, it is considered part of the CENTRAL NERVOUS SYSTEM. Cranial Nerve II,Second Cranial Nerve,Nervus Opticus,Cranial Nerve, Second,Cranial Nerves, Second,Nerve, Optic,Nerve, Second Cranial,Nerves, Optic,Nerves, Second Cranial,Optic Nerves,Second Cranial Nerves
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002232 Carbocyanines Compounds that contain three methine groups. They are frequently used as cationic dyes used for differential staining of biological materials. Carbocyanine
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal

Related Publications

K Ono, and T Tsumori, and T Kishi, and S Yokota, and Y Yasui
January 1985, Developmental neuroscience,
K Ono, and T Tsumori, and T Kishi, and S Yokota, and Y Yasui
December 1999, Developmental biology,
K Ono, and T Tsumori, and T Kishi, and S Yokota, and Y Yasui
June 2003, Molecular vision,
K Ono, and T Tsumori, and T Kishi, and S Yokota, and Y Yasui
February 2012, Journal of visualized experiments : JoVE,
K Ono, and T Tsumori, and T Kishi, and S Yokota, and Y Yasui
August 1983, Neuroscience,
K Ono, and T Tsumori, and T Kishi, and S Yokota, and Y Yasui
March 1979, The Journal of cell biology,
K Ono, and T Tsumori, and T Kishi, and S Yokota, and Y Yasui
April 1984, The Journal of comparative neurology,
K Ono, and T Tsumori, and T Kishi, and S Yokota, and Y Yasui
May 2012, Toxicology international,
K Ono, and T Tsumori, and T Kishi, and S Yokota, and Y Yasui
December 1996, The European journal of neuroscience,
K Ono, and T Tsumori, and T Kishi, and S Yokota, and Y Yasui
September 1994, Journal of neurobiology,
Copied contents to your clipboard!