Hepatocyte-catalysed detoxification of cyanide by L- and D-cysteine. 1998

J Huang, and H Niknahad, and S Khan, and P J O'Brien
Faculty of Pharmacy, University of Toronto, Ontario, Canada.

The hepatocyte metabolic pathways involved in the detoxification of cyanide by cysteine have been investigated in vitro using hepatocytes isolated from Sprague-Dawley rats. Cyanide toxicity towards isolated hepatocytes could be prevented by the addition of L- or D-cysteine, cystine, or the cysteine metabolites thiosulfate and mercaptopyruvate, which markedly increased thiocyanate formation. Prior depletion of hepatocyte GSH markedly increased thiosulfate formation from L- or D-cysteine without affecting thiocyanate formation from L- or D-cysteine. This suggested that the major metabolic pathway for thiocyanate formation did not involve thiosulfate. Mercaptopyruvate was a more likely metabolic intermediate, as thiocyanate formation from L-cysteine but not thiosulfate was inhibited markedly by aminooxyacetate, a cysteine aminotransferase inhibitor, and propargylglycine, a gamma-cystathionase inhibitor. Furthermore, propargylglycine prevented L-cysteine cytoprotection against cyanide toxicity. Thiocyanate formation from D-cysteine likely also involved mercaptopyruvate, as thiocyanate formation from D-cysteine but not L-cysteine was inhibited by benzoate, an inhibitor of D-amino acid oxidase. Furthermore, benzoate prevented D-cysteine cytoprotection against cyanide toxicity. Cystine may also be an intermediate, as hepatocyte thiocyanate formation from added L-cysteine was inhibited when L-cysteine autoxidation was prevented with the copper chelator bathocuproine disulfonate. Furthermore, thiocyanate formation by rat liver homogenates with L-cystine was far more rapid than that with L-cysteine. Hepatocyte thiocyanate metabolic intermediates of beta-mercaptopyruvate and thiocystine were proposed for L-cysteine, and beta-mercaptopyruvate was proposed for D-cysteine.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008658 Inactivation, Metabolic Reduction of pharmacologic activity or toxicity of a drug or other foreign substance by a living system, usually by enzymatic action. It includes those metabolic transformations that make the substance more soluble for faster renal excretion. Detoxication, Drug, Metabolic,Drug Detoxication, Metabolic,Metabolic Detoxication, Drug,Detoxification, Drug, Metabolic,Metabolic Detoxification, Drug,Metabolic Drug Inactivation,Detoxication, Drug Metabolic,Detoxication, Metabolic Drug,Detoxification, Drug Metabolic,Drug Inactivation, Metabolic,Drug Metabolic Detoxication,Drug Metabolic Detoxification,Inactivation, Metabolic Drug,Metabolic Drug Detoxication,Metabolic Inactivation
D003486 Cyanides Inorganic salts of HYDROGEN CYANIDE containing the -CN radical. The concept also includes isocyanides. It is distinguished from NITRILES, which denotes organic compounds containing the -CN radical. Cyanide,Isocyanide,Isocyanides
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D003553 Cystine A covalently linked dimeric nonessential amino acid formed by the oxidation of CYSTEINE. Two molecules of cysteine are joined together by a disulfide bridge to form cystine. Copper Cystinate,L-Cystine,L Cystine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013861 Thiocyanates Organic derivatives of thiocyanic acid which contain the general formula R-SCN. Rhodanate,Rhodanates
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

J Huang, and H Niknahad, and S Khan, and P J O'Brien
January 1978, The Italian journal of biochemistry,
J Huang, and H Niknahad, and S Khan, and P J O'Brien
August 2005, Archives of environmental contamination and toxicology,
J Huang, and H Niknahad, and S Khan, and P J O'Brien
May 2006, Chemosphere,
J Huang, and H Niknahad, and S Khan, and P J O'Brien
January 1988, Ciba Foundation symposium,
J Huang, and H Niknahad, and S Khan, and P J O'Brien
May 2006, Experimental biology and medicine (Maywood, N.J.),
J Huang, and H Niknahad, and S Khan, and P J O'Brien
December 1989, Veterinary and human toxicology,
J Huang, and H Niknahad, and S Khan, and P J O'Brien
September 1996, Biochemical pharmacology,
J Huang, and H Niknahad, and S Khan, and P J O'Brien
December 1997, Carbohydrate research,
J Huang, and H Niknahad, and S Khan, and P J O'Brien
April 2022, Organic & biomolecular chemistry,
J Huang, and H Niknahad, and S Khan, and P J O'Brien
July 2010, Chemical research in toxicology,
Copied contents to your clipboard!