SNAREs and membrane fusion in the Golgi apparatus. 1998

B J Nichols, and H R Pelham
MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.

Soluble factors, NSF and SNAPs, are required at many membrane fusion events within the cell. They interact with a class of type II integral membrane proteins termed SNAP receptors, or SNAREs. Interaction between cognate SNAREs on opposing membranes is a prerequisite for NSF dependent membrane fusion. NSF is an ATPase which will disrupt complexes composed of different SNAREs. However, there is increasingly abundant evidence that the SNARE complex recognised by NSF does not bridge the two fusing membranes, but rather is composed of SNAREs in the same membrane. The essential role of NSF may be to prime SNAREs for a direct role during fusion. The best characterised SNAREs in the Golgi are Sed5p in yeast and its mammalian homologue syntaxin 5, both of which are predominantly localised to the cis Golgi. The SNARE-SNARE interactions in which these two proteins are involved are strikingly similar. Sed5p and syntaxin 5 may mediate three distinct pathways for membrane flow into the cis Golgi, one from the ER, one from later Golgi cisternae, and possibly a third from endosomes. Syntaxin 5 is itself likely to cycle through the ER, and thus may be involved in homotypic fusion of ER derived transport vesicles. In all well characterised SNARE dependent membrane fusion events one of the interacting SNAREs is a syntaxin homologue. There are only eight members of the syntaxin family in yeast. Besides Sed5p two others, Tlg1p and Tlg2p, are found in the Golgi complex. They are present in a late Golgi compartment, but neither is required for transit of secreted proteins through the Golgi. We suggest that these observations are most compatible with a model for transit through the Golgi in which anterograde cargo is carried in cisternae, the enzymatic composition of which changes with time as Golgi resident enzymes are delivered in retrograde transport vesicles.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008561 Membrane Fusion The adherence and merging of cell membranes, intracellular membranes, or artificial membranes to each other or to viruses, parasites, or interstitial particles through a variety of chemical and physical processes. Fusion, Membrane,Fusions, Membrane,Membrane Fusions
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic
D005089 Exocytosis Cellular release of material within membrane-limited vesicles by fusion of the vesicles with the CELL MEMBRANE.
D006056 Golgi Apparatus A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) Golgi Complex,Apparatus, Golgi,Complex, Golgi
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

B J Nichols, and H R Pelham
January 1982, The Journal of cell biology,
B J Nichols, and H R Pelham
August 1995, FEBS letters,
B J Nichols, and H R Pelham
September 2008, Cellular and molecular life sciences : CMLS,
B J Nichols, and H R Pelham
March 2001, Trends in cell biology,
B J Nichols, and H R Pelham
August 1999, Current opinion in cell biology,
B J Nichols, and H R Pelham
September 2006, Nature reviews. Molecular cell biology,
B J Nichols, and H R Pelham
January 2011, Advances in experimental medicine and biology,
B J Nichols, and H R Pelham
August 1997, Current opinion in cell biology,
B J Nichols, and H R Pelham
August 2011, Journal of molecular cell biology,
B J Nichols, and H R Pelham
January 2009, Protein and peptide letters,
Copied contents to your clipboard!