Inhibition of cholesterol esterification by DuP 128 decreases hepatic apolipoprotein B secretion in vivo: effect of dietary fat and cholesterol. 1998

J R Burnett, and L J Wilcox, and D E Telford, and S J Kleinstiver, and P H Barrett, and M W Huff
The Departments of Medicine and Biochemistry and The John P. Robarts Research Institute, 4-16, University of Western Ontario, 100 Perth Drive, London, Ont. N6A 5K8, Canada.

To further test the hypothesis that newly synthesized cholesteryl esters regulate hepatic apolipoprotein B (apoB) secretion into plasma, apoB kinetic studies were carried out in seven control miniature pigs and in seven animals after 21 days intravenous administration of the acyl coenzyme A:cholesterol acyltransferase (ACAT) inhibitor DuP 128 (2.2 mg/kg/day). Pigs were fed a fat (34% of calories; polyunsaturated/monounsaturated/saturated ratio, 1:1:1) and cholesterol (400 mg/day; 0.1%; 0.2 mg/kcal) containing pig chow based diet. DuP 128 significantly reduced total plasma triglyceride and very low density lipoprotein (VLDL) triglyceride concentrations by 36 and 31%, respectively (P<0.05). Autologous 131I-VLDL and 125I-LDL were injected simultaneously into each pig and apoB kinetic data was analyzed using multicompartmental analysis (SAAM II). The VLDL apoB pool size decreased by 26% (0.443 vs. 0.599 mg/kg; P<0. 001) which was due entirely to a 28% reduction in VLDL apoB production or secretion rate (1.831 vs. 2.548 mg/kg/h; P=0.006). The fractional catabolic rate (FCR) for VLDL apoB was unchanged. The LDL apoB pool size and production rate were unaffected by DuP 128 treatment. Hepatic microsomal ACAT activity decreased by 51% (0.44 vs. 0.90 nmol/min/mg; P<0.001). Although an increase in hepatic free cholesterol and subsequent decrease in both LDL receptor expression and LDL apoB FCR might be expected, this did not occur. The concentration of hepatic free cholesterol decreased 12% (P=0.008) and the LDL apoB FCR were unaffected by DuP 128 treatment. In addition, DuP 128 treatment did not alter the concentration of hepatic triglyceride or the activity of diacylglycerol acyltransferase, indicating a lack of effect of DuP 128 on hepatic triglyceride metabolism. In our previous studies, DuP 128 treatment of miniature pigs fed a low fat, cholesterol free diet, decreased VLDL apoB secretion by 65% resulting in a reduction in plasma apoB of 60%. We conclude that in miniature pigs fed a high fat, cholesterol containing diet, the inhibition of hepatic cholesteryl ester synthesis by DuP 128 decreases apoB secretion into plasma, but the effect is attenuated relative to a low fat, cholesterol free diet.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D007422 Intestines The section of the alimentary canal from the STOMACH to the ANAL CANAL. It includes the LARGE INTESTINE and SMALL INTESTINE. Intestine
D008079 Lipoproteins, VLDL A class of lipoproteins of very light (0.93-1.006 g/ml) large size (30-80 nm) particles with a core composed mainly of TRIGLYCERIDES and a surface monolayer of PHOSPHOLIPIDS and CHOLESTEROL into which are imbedded the apolipoproteins B, E, and C. VLDL facilitates the transport of endogenously made triglycerides to extrahepatic tissues. As triglycerides and Apo C are removed, VLDL is converted to INTERMEDIATE-DENSITY LIPOPROTEINS, then to LOW-DENSITY LIPOPROTEINS from which cholesterol is delivered to the extrahepatic tissues. Pre-beta-Lipoprotein,Prebeta-Lipoprotein,Prebeta-Lipoproteins,Very Low Density Lipoprotein,Very-Low-Density Lipoprotein,Very-Low-Density Lipoproteins,Lipoprotein VLDL II,Lipoproteins, VLDL I,Lipoproteins, VLDL III,Lipoproteins, VLDL1,Lipoproteins, VLDL2,Lipoproteins, VLDL3,Pre-beta-Lipoproteins,Lipoprotein, Very-Low-Density,Lipoproteins, Very-Low-Density,Pre beta Lipoprotein,Pre beta Lipoproteins,Prebeta Lipoprotein,Prebeta Lipoproteins,VLDL Lipoproteins,VLDL1 Lipoproteins,VLDL2 Lipoproteins,VLDL3 Lipoproteins,Very Low Density Lipoproteins
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D002785 Sterol O-Acyltransferase An enzyme that catalyzes the formation of cholesterol esters by the direct transfer of the fatty acid group from a fatty acyl CoA derivative. This enzyme has been found in the adrenal gland, gonads, liver, intestinal mucosa, and aorta of many mammalian species. EC 2.3.1.26. Acyl-CoA-Cholesterol Acyltransferase,Cholesterol Acyltransferase,Cholesterol Esterifying Enzyme,Acyl CoA Cholesterol Acyltransferase,Acyltransferase, Acyl-CoA-Cholesterol,Acyltransferase, Cholesterol,Enzyme, Cholesterol Esterifying,Esterifying Enzyme, Cholesterol,O-Acyltransferase, Sterol,Sterol O Acyltransferase
D002791 Cholesterol, Dietary Cholesterol present in food, especially in animal products. Dietary Cholesterol
D004041 Dietary Fats Fats present in food, especially in animal products such as meat, meat products, butter, ghee. They are present in lower amounts in nuts, seeds, and avocados. Fats, Dietary,Dietary Fat,Fat, Dietary
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000924 Anticholesteremic Agents Substances used to lower plasma CHOLESTEROL levels. Cholesterol Inhibitors,Hypocholesteremic Agents,Anticholesteremic Drugs,Anticholesteremics,Inhibitors, Cholesterol,Agents, Anticholesteremic,Agents, Hypocholesteremic,Drugs, Anticholesteremic

Related Publications

J R Burnett, and L J Wilcox, and D E Telford, and S J Kleinstiver, and P H Barrett, and M W Huff
July 1994, Atherosclerosis,
J R Burnett, and L J Wilcox, and D E Telford, and S J Kleinstiver, and P H Barrett, and M W Huff
May 2017, Arteriosclerosis, thrombosis, and vascular biology,
J R Burnett, and L J Wilcox, and D E Telford, and S J Kleinstiver, and P H Barrett, and M W Huff
January 1996, Journal of lipid research,
J R Burnett, and L J Wilcox, and D E Telford, and S J Kleinstiver, and P H Barrett, and M W Huff
April 1999, Arteriosclerosis, thrombosis, and vascular biology,
J R Burnett, and L J Wilcox, and D E Telford, and S J Kleinstiver, and P H Barrett, and M W Huff
January 2000, Pharmacology,
J R Burnett, and L J Wilcox, and D E Telford, and S J Kleinstiver, and P H Barrett, and M W Huff
July 1994, Clinical pharmacology and therapeutics,
J R Burnett, and L J Wilcox, and D E Telford, and S J Kleinstiver, and P H Barrett, and M W Huff
October 1991, Biochimica et biophysica acta,
J R Burnett, and L J Wilcox, and D E Telford, and S J Kleinstiver, and P H Barrett, and M W Huff
December 1984, The Journal of clinical investigation,
J R Burnett, and L J Wilcox, and D E Telford, and S J Kleinstiver, and P H Barrett, and M W Huff
March 1994, Biochimica et biophysica acta,
J R Burnett, and L J Wilcox, and D E Telford, and S J Kleinstiver, and P H Barrett, and M W Huff
August 1995, Metabolism: clinical and experimental,
Copied contents to your clipboard!