Mitochondria and neuronal glutamate excitotoxicity. 1998

D G Nicholls, and S L Budd
Neurosciences Institute, Department of Pharmacology and Neuroscience, University of Dundee, Dundee DD1 9SY, UK. d.g.nicholls@dundee.ac.uk

The role of mitochondria in the control of glutamate excitotoxicity is investigated. The response of cultured cerebellar granule cells to continuous glutamate exposure is characterised by a transient elevation in cytoplasmic free calcium concentration followed by decay to a plateau as NMDA receptors partially inactivate. After a variable latent period, a secondary, irreversible increase in calcium occurs (delayed calcium deregulation, DCD) which precedes and predicts subsequent cell death. DCD is not controlled by mitochondrial ATP synthesis since it is unchanged in the presence of the ATP synthase inhibitor oligomycin in cells with active glycolysis. However, mitochondrial depolarisation (and hence inhibition of mitochondrial calcium accumulation) without parallel ATP depletion (oligomycin plus either rotenone or antimycin A) strongly protects the cells against DCD. Glutamate exposure is associated with an increase in the generation of superoxide anion by the cells, but superoxide generation in the absence of mitochondrial calcium accumulation is not neurotoxic. While it is concluded that mitochondrial calcium accumulation plays a critical role in the induction of DCD we can find no evidence for the involvement of the mitochondrial permeability transition.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009498 Neurotoxins Toxic substances from microorganisms, plants or animals that interfere with the functions of the nervous system. Most venoms contain neurotoxic substances. Myotoxins are included in this concept. Alpha-Neurotoxin,Excitatory Neurotoxin,Excitotoxins,Myotoxin,Myotoxins,Neurotoxin,Alpha-Neurotoxins,Excitatory Neurotoxins,Excitotoxin,Alpha Neurotoxin,Alpha Neurotoxins,Neurotoxin, Excitatory,Neurotoxins, Excitatory
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013481 Superoxides Highly reactive compounds produced when oxygen is reduced by a single electron. In biological systems, they may be generated during the normal catalytic function of a number of enzymes and during the oxidation of hemoglobin to METHEMOGLOBIN. In living organisms, SUPEROXIDE DISMUTASE protects the cell from the deleterious effects of superoxides. Superoxide Radical,Superoxide,Superoxide Anion

Related Publications

D G Nicholls, and S L Budd
October 2022, Membranes,
D G Nicholls, and S L Budd
March 2004, Current molecular medicine,
D G Nicholls, and S L Budd
February 2010, The Annals of thoracic surgery,
D G Nicholls, and S L Budd
November 2007, Journal of neuroscience research,
D G Nicholls, and S L Budd
January 1993, Research publications - Association for Research in Nervous and Mental Disease,
D G Nicholls, and S L Budd
April 1996, Progress in neurobiology,
D G Nicholls, and S L Budd
November 2017, Cellular and molecular neurobiology,
D G Nicholls, and S L Budd
May 2002, The Journal of pharmacology and experimental therapeutics,
D G Nicholls, and S L Budd
April 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!