The upstream sequence element of the C2 complement poly(A) signal activates mRNA 3' end formation by two distinct mechanisms. 1998

A Moreira, and Y Takagaki, and S Brackenridge, and M Wollerton, and J L Manley, and N J Proudfoot
Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.

The poly(A) signal of the C2 complement gene is unusual in that it possesses an upstream sequence element (USE) required for full activity in vivo. We describe here in vitro experiments demonstrating that this USE enhances both the cleavage and poly(A) addition reactions. We also show that the C2 USE can be cross-linked efficiently to a 55-kD protein that we identify as the polypyrimidine tract-binding protein (PTB), implicated previously in modulation of pre-mRNA splicing. Mutation of the PTB-binding site significantly reduces the efficiency of the C2 poly(A) site both in vivo and in vitro. Furthermore, addition of PTB to reconstituted processing reactions enhances cleavage at the C2 poly(A) site, indicating that PTB has a direct role in recognition of this signal. The C2 USE, however, also increases the affinity of general polyadenylation factors independently for the C2 poly(A) signal as detected by enhanced binding of cleavage-stimulaton factor (CstF). Strikingly, this leads to a novel CstF-dependant enhancement of the poly(A) synthesis phase of the reaction. These studies both emphasize the interconnection between splicing and polyadenylation and indicate an unexpected flexibility in the organization of mammalian poly(A) sites.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011061 Poly A A group of adenine ribonucleotides in which the phosphate residues of each adenine ribonucleotide act as bridges in forming diester linkages between the ribose moieties. Adenine Polynucleotides,Polyadenylic Acids,Poly(rA),Polynucleotides, Adenine
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003175 Complement C2 A component of the CLASSICAL COMPLEMENT PATHWAY. C2 is cleaved by activated COMPLEMENT C1S into COMPLEMENT C2B and COMPLEMENT C2A. C2a, the COOH-terminal fragment containing a SERINE PROTEASE, combines with COMPLEMENT C4B to form C4b2a (CLASSICAL PATHWAY C3 CONVERTASE) and subsequent C4b2a3b (CLASSICAL PATHWAY C5 CONVERTASE). C2 Complement,Complement 2,Complement Component 2,C2, Complement,Complement, C2,Component 2, Complement
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012261 Ribonucleoproteins Complexes of RNA-binding proteins with ribonucleic acids (RNA). Ribonucleoprotein
D012326 RNA Splicing The ultimate exclusion of nonsense sequences or intervening sequences (introns) before the final RNA transcript is sent to the cytoplasm. RNA, Messenger, Splicing,Splicing, RNA,RNA Splicings,Splicings, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

A Moreira, and Y Takagaki, and S Brackenridge, and M Wollerton, and J L Manley, and N J Proudfoot
January 1997, Nucleic acids research,
A Moreira, and Y Takagaki, and S Brackenridge, and M Wollerton, and J L Manley, and N J Proudfoot
January 2005, Nucleic acids research,
A Moreira, and Y Takagaki, and S Brackenridge, and M Wollerton, and J L Manley, and N J Proudfoot
May 1995, Molecular and cellular biology,
A Moreira, and Y Takagaki, and S Brackenridge, and M Wollerton, and J L Manley, and N J Proudfoot
August 1995, The EMBO journal,
A Moreira, and Y Takagaki, and S Brackenridge, and M Wollerton, and J L Manley, and N J Proudfoot
July 1987, Cell,
A Moreira, and Y Takagaki, and S Brackenridge, and M Wollerton, and J L Manley, and N J Proudfoot
May 1994, The EMBO journal,
A Moreira, and Y Takagaki, and S Brackenridge, and M Wollerton, and J L Manley, and N J Proudfoot
May 1997, Molecular & general genetics : MGG,
A Moreira, and Y Takagaki, and S Brackenridge, and M Wollerton, and J L Manley, and N J Proudfoot
January 1994, Proceedings of the National Academy of Sciences of the United States of America,
A Moreira, and Y Takagaki, and S Brackenridge, and M Wollerton, and J L Manley, and N J Proudfoot
December 1992, Molecular and cellular biology,
A Moreira, and Y Takagaki, and S Brackenridge, and M Wollerton, and J L Manley, and N J Proudfoot
August 1994, Journal of virology,
Copied contents to your clipboard!