Mouse glycosylphosphatidylinositol-specific phospholipase D (Gpld1) characterization. 1998

R C LeBoeuf, and M Caldwell, and Y Guo, and C Metz, and M A Davitz, and L K Olson, and M A Deeg
Departments of Medicine and Nutritional Sciences, University of Washington, Box 353410, Seattle, Washington 98195-3410, USA.

Glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD) is an 110-kDa monomeric protein found in the circulation that is capable of degrading the GPI anchor utilized by dozens of cell-surface proteins in the presence of detergent. This protein is relatively abundant (5-10 microgram/ml in human serum), yet its sites of synthesis, gene structure, and overall function are unclear. It is our purpose to use the mouse system to determine its putative roles in lipid transport, pathogen control, and diabetes. We have isolated murine full-length cDNA for GPI-PLD from a pancreatic alpha cell library. The deduced amino acid sequence shows 74% homology to bovine and human GPI-PLD. There is a single structural gene (Gpld1) mapping to mouse Chromosome (Chr) 13, and among nine tissues, liver showed the greatest abundance of GPI-PLD mRNA. Genetic differences in serum GPI-PLD activity were seen among four mouse strains, and no correlation was seen between GPI-PLD activity and circulating levels of high density lipoproteins in these mice. This is the first report of map position and genetic regulation for Gpld1. This information will enable us to further study the expression and function of GPI-PLD in normal and pathological conditions.

UI MeSH Term Description Entries
D008075 Lipoproteins, HDL A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases. High Density Lipoprotein,High-Density Lipoprotein,High-Density Lipoproteins,alpha-Lipoprotein,alpha-Lipoproteins,Heavy Lipoproteins,alpha-1 Lipoprotein,Density Lipoprotein, High,HDL Lipoproteins,High Density Lipoproteins,Lipoprotein, High Density,Lipoprotein, High-Density,Lipoproteins, Heavy,Lipoproteins, High-Density,alpha Lipoprotein,alpha Lipoproteins
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010179 Pancreas A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
D010739 Phospholipase D An enzyme found mostly in plant tissue. It hydrolyzes glycerophosphatidates with the formation of a phosphatidic acid and a nitrogenous base such as choline. This enzyme also catalyzes transphosphatidylation reactions. EC 3.1.4.4. Lecithinase D,Phosphatidylcholine Phosphohydrolase
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004036 Diet, Atherogenic A diet that contributes to the development and acceleration of ATHEROGENESIS. Atherogenic Diet,Atherogenic Diets,Diets, Atherogenic

Related Publications

R C LeBoeuf, and M Caldwell, and Y Guo, and C Metz, and M A Davitz, and L K Olson, and M A Deeg
January 1991, Methods in enzymology,
R C LeBoeuf, and M Caldwell, and Y Guo, and C Metz, and M A Davitz, and L K Olson, and M A Deeg
September 1991, Cell biology international reports,
R C LeBoeuf, and M Caldwell, and Y Guo, and C Metz, and M A Davitz, and L K Olson, and M A Deeg
November 2000, Biochimica et biophysica acta,
R C LeBoeuf, and M Caldwell, and Y Guo, and C Metz, and M A Davitz, and L K Olson, and M A Deeg
January 2004, Biochimie,
R C LeBoeuf, and M Caldwell, and Y Guo, and C Metz, and M A Davitz, and L K Olson, and M A Deeg
October 2010, Metabolism: clinical and experimental,
R C LeBoeuf, and M Caldwell, and Y Guo, and C Metz, and M A Davitz, and L K Olson, and M A Deeg
October 1993, The American journal of physiology,
R C LeBoeuf, and M Caldwell, and Y Guo, and C Metz, and M A Davitz, and L K Olson, and M A Deeg
October 1999, Archives of biochemistry and biophysics,
R C LeBoeuf, and M Caldwell, and Y Guo, and C Metz, and M A Davitz, and L K Olson, and M A Deeg
March 2006, American journal of physiology. Endocrinology and metabolism,
R C LeBoeuf, and M Caldwell, and Y Guo, and C Metz, and M A Davitz, and L K Olson, and M A Deeg
May 1999, Biological chemistry,
R C LeBoeuf, and M Caldwell, and Y Guo, and C Metz, and M A Davitz, and L K Olson, and M A Deeg
September 2007, Translational research : the journal of laboratory and clinical medicine,
Copied contents to your clipboard!