In-vitro differentiation of mature dendritic cells from human blood monocytes. 1998

R Gieseler, and D Heise, and A Soruri, and P Schwartz, and J H Peters
Department of Immunology, Georg-August University, Göttingen, Germany.

Representing the most potent antigen-presenting cells, dendritic cells (DC) can now be generated from human blood monocytes. We recently presented a novel protocol employing GM-CSF, IL-4, and IFN-gamma to differentiate monocyte-derived DC in vitro. Here, such cells are characterized in detail. Cells in culture exhibited both dendritic and veiled morphologies, the former being adherent and the latter suspended. Phenotypically, they were CD1a-/dim, CD11a+, CD11b++, CD11c+, CD14dim/-, CD16a-/dim, CD18+, CD32dim/-, CD33+, CD40+, CD45R0+, CD50+, CD54+, CD64-/dim, CD68+, CD71+, CD80dim, CD86+/++, MHC class I++/ , HLA-DR++/ , HLA-DP+, and HLA-DQ+. The DC stimulated a strong allogeneic T-cell response, and further evidence for their autologous antigen-specific stimulation is discussed. Although resembling a mature CD11c+ CD45R0+ blood DC subset identified earlier, their differentiation in the presence of the Th1 and Th2 cytokines IFN-gamma and IL-4 indicates that these DC may conform to mature mucosal DC.

UI MeSH Term Description Entries
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003713 Dendritic Cells Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION). Dendritic Cells, Interdigitating,Interdigitating Cells,Plasmacytoid Dendritic Cells,Veiled Cells,Dendritic Cells, Interstitial,Dendritic Cells, Plasmacytoid,Interdigitating Dendritic Cells,Interstitial Dendritic Cells,Cell, Dendritic,Cell, Interdigitating,Cell, Interdigitating Dendritic,Cell, Interstitial Dendritic,Cell, Plasmacytoid Dendritic,Cell, Veiled,Cells, Dendritic,Cells, Interdigitating,Cells, Interdigitating Dendritic,Cells, Interstitial Dendritic,Cells, Plasmacytoid Dendritic,Cells, Veiled,Dendritic Cell,Dendritic Cell, Interdigitating,Dendritic Cell, Interstitial,Dendritic Cell, Plasmacytoid,Interdigitating Cell,Interdigitating Dendritic Cell,Interstitial Dendritic Cell,Plasmacytoid Dendritic Cell,Veiled Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012756 Sheep Any of the ruminant mammals with curved horns in the genus Ovis, family Bovidae. They possess lachrymal grooves and interdigital glands, which are absent in GOATS. Ovis,Sheep, Dall,Dall Sheep,Ovis dalli
D015703 Antigens, CD Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation. CD Antigen,Cluster of Differentiation Antigen,Cluster of Differentiation Marker,Differentiation Antigens, Leukocyte, Human,Leukocyte Differentiation Antigens, Human,Cluster of Differentiation Antigens,Cluster of Differentiation Markers,Antigen Cluster, Differentiation,Antigen, CD,CD Antigens,Differentiation Antigen Cluster,Differentiation Marker Cluster,Marker Cluster, Differentiation
D015815 Cell Adhesion Molecules Surface ligands, usually glycoproteins, that mediate cell-to-cell adhesion. Their functions include the assembly and interconnection of various vertebrate systems, as well as maintenance of tissue integration, wound healing, morphogenic movements, cellular migrations, and metastasis. Cell Adhesion Molecule,Intercellular Adhesion Molecule,Intercellular Adhesion Molecules,Leukocyte Adhesion Molecule,Leukocyte Adhesion Molecules,Saccharide-Mediated Cell Adhesion Molecules,Saccharide Mediated Cell Adhesion Molecules,Adhesion Molecule, Cell,Adhesion Molecule, Intercellular,Adhesion Molecule, Leukocyte,Adhesion Molecules, Cell,Adhesion Molecules, Intercellular,Adhesion Molecules, Leukocyte,Molecule, Cell Adhesion,Molecule, Intercellular Adhesion,Molecule, Leukocyte Adhesion,Molecules, Cell Adhesion,Molecules, Intercellular Adhesion,Molecules, Leukocyte Adhesion
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

R Gieseler, and D Heise, and A Soruri, and P Schwartz, and J H Peters
February 1997, European journal of immunology,
R Gieseler, and D Heise, and A Soruri, and P Schwartz, and J H Peters
April 2003, Journal of immunology (Baltimore, Md. : 1950),
R Gieseler, and D Heise, and A Soruri, and P Schwartz, and J H Peters
March 2007, Clinical and experimental immunology,
R Gieseler, and D Heise, and A Soruri, and P Schwartz, and J H Peters
April 2014, Human immunology,
R Gieseler, and D Heise, and A Soruri, and P Schwartz, and J H Peters
June 1999, Immunobiology,
R Gieseler, and D Heise, and A Soruri, and P Schwartz, and J H Peters
August 2001, Journal of hematotherapy & stem cell research,
R Gieseler, and D Heise, and A Soruri, and P Schwartz, and J H Peters
July 2005, Current protocols in immunology,
R Gieseler, and D Heise, and A Soruri, and P Schwartz, and J H Peters
March 2012, Blood,
R Gieseler, and D Heise, and A Soruri, and P Schwartz, and J H Peters
January 2004, Immunobiology,
R Gieseler, and D Heise, and A Soruri, and P Schwartz, and J H Peters
August 2002, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!