Assessment of bacterial viability status by flow cytometry and single cell sorting. 1998

G N Caron, and P Stephens, and R A Badley
Unilever Research, Colworth Laboratory, Sharnbrook, Bedfordshire, UK. hard.nebe-von-caron@unilever.com

Rapid bacterial detection and viability measurements have been greatly enhanced by recent advances in the use of fluorescent stains in cytometry. It has previously been shown that four physiological states can be distinguished: reproductively viable, metabolically active, intact and permeabilized. Previous sorting experiments have shown that not all intact cells readily grow, but some intact cells can grow even when they fail to show metabolic activity, as determined by esterase turnover. To circumvent the limitations imposed by active dye extrusion or cell dormancy on viability measurements used to date (e.g., enzyme activity or cell polarization), a fast triple fluorochrome staining procedure has been developed that takes account of these problems. This allows further cellular characterization of intact cells by: active exclusion of ethidium bromide (EB) (metabolically active cells), uptake of EB but exclusion of bis-oxonol (BOX) (de-energized but with a polarized cell membrane) and uptake of both dyes (depolarized). Permeabilized cells were identified by propidium iodide (PI) uptake. The method was validated using an electronically programmable single cell sorter (EPICS Elite) and aged Salmonella typhimurium cells. Reproductive viability was determined by sorting single cells to their staining pattern directly onto agar plates. Most polarized cells could be recovered as well as a significant fraction of the depolarized cells, demonstrating that depolarization is a sensitive measure of cell damage but a poor indicator of cell death.

UI MeSH Term Description Entries
D011419 Propidium Quaternary ammonium analog of ethidium; an intercalating dye with a specific affinity to certain forms of DNA and, used as diiodide, to separate them in density gradients; also forms fluorescent complexes with cholinesterase which it inhibits. Propidium Diiodide,Propidium Iodide,Diiodide, Propidium,Iodide, Propidium
D004996 Ethidium A trypanocidal agent and possible antiviral agent that is widely used in experimental cell biology and biochemistry. Ethidium has several experimentally useful properties including binding to nucleic acids, noncompetitive inhibition of nicotinic acetylcholine receptors, and fluorescence among others. It is most commonly used as the bromide. Ethidium Bromide,Homidium Bromide,Novidium,Bromide, Ethidium,Bromide, Homidium
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D001431 Bacteriological Techniques Techniques used in studying bacteria. Bacteriologic Technic,Bacteriologic Technics,Bacteriologic Techniques,Bacteriological Technique,Technic, Bacteriological,Technics, Bacteriological,Technique, Bacteriological,Techniques, Bacteriological,Bacteriologic Technique,Bacteriological Technic,Bacteriological Technics,Technic, Bacteriologic,Technics, Bacteriologic,Technique, Bacteriologic,Techniques, Bacteriologic
D012486 Salmonella typhimurium A serotype of Salmonella enterica that is a frequent agent of Salmonella gastroenteritis in humans. It also causes PARATYPHOID FEVER. Salmonella typhimurium LT2
D015169 Colony Count, Microbial Enumeration by direct count of viable, isolated bacterial, archaeal, or fungal CELLS or SPORES capable of growth on solid CULTURE MEDIA. The method is used routinely by environmental microbiologists for quantifying organisms in AIR; FOOD; and WATER; by clinicians for measuring patients' microbial load; and in antimicrobial drug testing. Agar Dilution Count,Colony-Forming Units Assay, Microbial,Fungal Count,Pour Plate Count,Spore Count,Spread Plate Count,Streak Plate Count,Colony Forming Units Assay, Microbial,Colony Forming Units Assays, Microbial,Agar Dilution Counts,Colony Counts, Microbial,Count, Agar Dilution,Count, Fungal,Count, Microbial Colony,Count, Pour Plate,Count, Spore,Count, Spread Plate,Count, Streak Plate,Counts, Agar Dilution,Counts, Fungal,Counts, Microbial Colony,Counts, Pour Plate,Counts, Spore,Counts, Spread Plate,Counts, Streak Plate,Dilution Count, Agar,Dilution Counts, Agar,Fungal Counts,Microbial Colony Count,Microbial Colony Counts,Pour Plate Counts,Spore Counts,Spread Plate Counts,Streak Plate Counts

Related Publications

G N Caron, and P Stephens, and R A Badley
January 1998, Yeast (Chichester, England),
G N Caron, and P Stephens, and R A Badley
November 1992, Applied microbiology and biotechnology,
G N Caron, and P Stephens, and R A Badley
August 1999, Microbial ecology,
G N Caron, and P Stephens, and R A Badley
April 2021, Bio-protocol,
G N Caron, and P Stephens, and R A Badley
March 1986, Parasitology today (Personal ed.),
G N Caron, and P Stephens, and R A Badley
January 2007, Advances in biochemical engineering/biotechnology,
G N Caron, and P Stephens, and R A Badley
January 1980, Blood cells,
G N Caron, and P Stephens, and R A Badley
January 2023, Frontiers in medicine,
G N Caron, and P Stephens, and R A Badley
April 2017, Journal of phycology,
G N Caron, and P Stephens, and R A Badley
November 2010, Applied and environmental microbiology,
Copied contents to your clipboard!