An investigation of tachykinin NK2 receptor subtypes in the rat. 1998

M A Matuszek, and X P Zeng, and J Strigas, and E Burcher
School of Physiology and Pharmacology, University of New South Wales, Sydney, Australia.

The heterogeneity of tachykinin NK2 receptor subtypes was examined in five tissues from the rat, using binding and functional techniques. Initial experiments with the selective radioligand [125I][Lys5,Tyr(I2)7,MeLeu9,Nle10]neurokinin A-(4-10) showed no specific binding to rat spinal cord membranes or sections. However, this radioligand exhibited high specific binding (80-95% of total) in membranes from the rat fundus, colon, bladder and vas deferens. Dissociation constants (KD) were lower in bladder and colon (0.4 nM) than in fundus (1.9 nM) or vas deferens (1.4 nM). Neurokinin A, neuropeptide gamma, [Lys5,MeLeu9,Nle10]NK(4-10), SR 48968 [(S)-N-methyl-N[4-(4-acetylamino-4-phenylpiperidino)-2-(3,4-dichlorophen yl)butyl]benzamine], GR 94800 [PhCO-Ala-Ala-DTrp-Phe-DPro-Pro-Nle-NH2] and MEN 10627 [cyclo(Met-Asp-Trp-Phe-Dap-Leu)cyclo(2beta-5beta)] displayed high affinity (pIC50 8.4-9.5) as competitors, with no significant difference in potency between these four tissues. [Lys5,MeLeu9,Nle10]neurokinin A-(4-10) contracted the isolated fundus (EC50 117 nM) and bladder (EC50 10 nM) and these responses were similarly inhibited by the tachykinin NK2 receptor antagonists, SR 48968 and MEN 10627 (pA2 values 7.6-8.2). In spite of differences in KD seen in some tissues, these results do not provide compelling evidence for tachykinin NK2 receptor heterogeneity in smooth muscle-containing tissues in the rat. The absence of detectable binding in rat spinal cord may be due to very low expression of tachykinin NK2 receptors, or to existence of a different receptor subtype.

UI MeSH Term Description Entries
D008297 Male Males
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D011869 Radioligand Assay Quantitative determination of receptor (binding) proteins in body fluids or tissue using radioactively labeled binding reagents (e.g., antibodies, intracellular receptors, plasma binders). Protein-Binding Radioassay,Radioreceptor Assay,Assay, Radioligand,Assay, Radioreceptor,Assays, Radioligand,Assays, Radioreceptor,Protein Binding Radioassay,Protein-Binding Radioassays,Radioassay, Protein-Binding,Radioassays, Protein-Binding,Radioligand Assays,Radioreceptor Assays
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018041 Receptors, Neurokinin-2 A class of cell surface receptors for tachykinins that prefers neurokinin A; (NKA, substance K, neurokinin alpha, neuromedin L), neuropeptide K; (NPK); or neuropeptide gamma over other tachykinins. Neurokinin-2 (NK-2) receptors have been cloned and are similar to other G-protein coupled receptors. NK-2 Receptors,Neurokinin A Receptors,Neurokinin-2 Receptors,Receptors, NK-2,Receptors, Substance K,SP-K Receptors,Substance K Receptors,NK-2 Receptor,NK-2 Receptor Site,Neurokinin-2 Receptor,SP-K Receptor,Substance K Receptor,NK 2 Receptor,NK 2 Receptor Site,NK 2 Receptors,Neurokinin 2 Receptor,Neurokinin 2 Receptors,Receptor Site, NK-2,Receptor, NK-2,Receptor, Neurokinin-2,Receptor, SP-K,Receptor, Substance K,Receptors, NK 2,Receptors, Neurokinin 2,Receptors, Neurokinin A,Receptors, SP-K,SP K Receptor,SP K Receptors
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

M A Matuszek, and X P Zeng, and J Strigas, and E Burcher
July 1990, British journal of pharmacology,
M A Matuszek, and X P Zeng, and J Strigas, and E Burcher
September 1991, British journal of pharmacology,
M A Matuszek, and X P Zeng, and J Strigas, and E Burcher
March 1995, Medicinal research reviews,
M A Matuszek, and X P Zeng, and J Strigas, and E Burcher
January 1994, European journal of pharmacology,
M A Matuszek, and X P Zeng, and J Strigas, and E Burcher
March 1994, British journal of pharmacology,
M A Matuszek, and X P Zeng, and J Strigas, and E Burcher
September 2003, Life sciences,
M A Matuszek, and X P Zeng, and J Strigas, and E Burcher
April 2001, Neuroscience letters,
M A Matuszek, and X P Zeng, and J Strigas, and E Burcher
November 2006, European journal of pharmacology,
M A Matuszek, and X P Zeng, and J Strigas, and E Burcher
June 1994, European journal of pharmacology,
M A Matuszek, and X P Zeng, and J Strigas, and E Burcher
February 1994, Bioorganic & medicinal chemistry,
Copied contents to your clipboard!